题面传送门

考虑容斥。我们记 \(a_i\) 为钦定 \(i\) 个人被 B 神碾压的方案数,如果我们已经求出了 \(a_i\) 那么一遍二项式反演即可求出答案,即 \(ans=\sum\limits_{i=k}^{n-1}a_i(-1)^{i-k}\dbinom{i}{k}\),于是现在问题转化为怎样求 \(a_i\)。首先我们肯定要从另外 \(n-1\) 个学生中选出这 \(i\) 个,方案数 \(\dbinom{n-1}{i}\),其次,根据“碾压”的定义,这 \(i\) 个学生在任何一门学科中的分数都 \(\le\) B 神的分数,也就是说对于任何一门学科 \(j\),都有这 \(i\) 个学生属于被 B 神吊打的 \(n-r_j\) 个学生中,故对于每一门学科,被被 B 神吊打的 \(n-r_j\) 个学生中有 \(i\) 个学生是确定的,我们只需另从 \(n-i-1\) 个学生中选出 \(n-r_j-i\) 即可,方案数为 \(\dbinom{n-i-1}{n-i-r_j}\),再其次,对每门学科我们要确定有多少种可能的分数,我们枚举 B 神的分数 \(l\),那么对于被 B 神吊打的 \(n-r_j\) 个学生,每个人都有 \(l\) 种可能的分数,方案数 \(l^{n-r_j}\),对于吊打 B 神的 \(r_j-1\) 个学生,每个人都有 \(u_j-l\) 种可能的分数,方案数 \((u_j-l)^{r_j-1}\),因此我们有:

\[a_i=\dbinom{n-1}{i}\prod\limits_{j=1}^m\dbinom{n-i-1}{n-i-r_j}\sum\limits_{l=1}^{u_j}l^{n-r_j}(u_j-l)^{r_j-1}
\]

由于这题 \(u_i\) 很大,直接算显然无法通过,不过注意到后面那坨东西 \(\sum\limits_{l=1}^{u_j}l^{n-r_j}(u_j-l)^{r_j-1}\) 是与 \(i\) 严格无关的,因此考虑将这东西预处理出来。怎么预处理呢,考虑将这东西用二项式定理展开变个形,具体来说:

\[\begin{aligned}
&\sum\limits_{l=1}^{u_j}l^{n-r_j}(u_j-l)^{r_j-1}\\
=&\sum\limits_{l=1}^{u_j}l^{n-r_j}\sum\limits_{t=0}^{r_j-1}u_j^t(-l)^{r_j-1-t}\dbinom{r_i-1}{t}\\
=&\sum\limits_{t=0}^{r_j-1}u_j^t\dbinom{r_i-1}{t}\sum\limits_{l=1}^{u_j}l^{n-r_j}(-l)^{r_j-1-t}\\
=&\sum\limits_{t=0}^{r_j-1}u_j^t\dbinom{r_i-1}{t}(-1)^{r_i-1-t}\sum\limits_{l=1}^{u_j}l^{n-1-t}
\end{aligned}
\]

芜湖~好了,前面枚举复杂度显然不会爆,后面那东西是自然数 \(k\) 次幂之和的形式,可以拉格朗日插值求出,于是复杂度就降到了 \(n^2m\),可以通过此题。

const int MAXN=100;
const int MOD=1e9+7;
int qpow(int x,int e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
int n,m,k,u[MAXN+5],r[MAXN+5],s[MAXN+5],f[MAXN+5],fac[MAXN+5],ifac[MAXN+5];
void init_fac(int mx){
for(int i=(fac[0]=ifac[0]=ifac[1]=1)+1;i<=mx;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=mx;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i-1]*ifac[i]%MOD;
}
int binom(int n,int k){
if(n<0||k<0||n<k) return 0;
return 1ll*fac[n]*ifac[k]%MOD*ifac[n-k]%MOD;
}
int sum[MAXN+5],pre[MAXN+5],suf[MAXN+5];
int calc(int n,int k){
for(int i=1;i<=k+1;i++) sum[i]=(sum[i-1]+qpow(i,k))%MOD;
pre[0]=n;for(int i=1;i<=k+1;i++) pre[i]=1ll*pre[i-1]*(n-i+MOD)%MOD;
suf[k+2]=1;for(int i=k+1;~i;i--) suf[i]=1ll*suf[i+1]*(n-i+MOD)%MOD;
int ans=0;
for(int i=1;i<=k+1;i++){
int mul=1ll*sum[i]*pre[i-1]%MOD*suf[i+1]%MOD*ifac[i]%MOD*ifac[k+1-i]%MOD;
if((k+1-i)&1) ans=(ans-mul+MOD)%MOD;else ans=(ans+mul)%MOD;
} return ans;
}
int main(){
scanf("%d%d%d",&n,&m,&k);init_fac(n+1);
for(int i=1;i<=m;i++) scanf("%d",&u[i]);
for(int i=1;i<=m;i++) scanf("%d",&r[i]);
for(int i=1;i<=m;i++) for(int l=0;l<r[i];l++){
int mul=1ll*binom(r[i]-1,l)*qpow(u[i],l)%MOD*calc(u[i],n-1-l)%MOD;
if((r[i]-1-l)&1) s[i]=(s[i]-mul+MOD)%MOD;else s[i]=(s[i]+mul)%MOD;
} int ans=0;
for(int i=k;i<n;i++){
int mul=binom(n-1,i);
for(int j=1;j<=m;j++) mul=1ll*mul*binom(n-i-1,n-r[j]-i)%MOD*s[j]%MOD;
if((i-k)&1) ans=(ans-1ll*mul*binom(i,k)%MOD+MOD)%MOD;
else ans=(ans+1ll*mul*binom(i,k)%MOD)%MOD;
} printf("%d\n",ans);
return 0;
}

洛谷 P3270 - [JLOI2016]成绩比较(容斥原理+组合数学+拉格朗日插值)的更多相关文章

  1. 洛谷 P5469 - [NOI2019] 机器人(区间 dp+拉格朗日插值)

    洛谷题面传送门 神仙题,放在 D1T2 可能略难了一点( 首先显然对于 P 型机器人而言,将它放在 \(i\) 之后它会走到左边第一个严格 \(>a_i\) 的位置,对于 Q 型机器人而言,将它 ...

  2. 【bzoj4559】[JLoi2016]成绩比较(dp+拉格朗日插值)

    bzoj 题意: 有\(n\)位同学,\(m\)门课. 一位同学在第\(i\)门课上面获得的分数上限为\(u_i\). 定义同学\(A\)碾压同学\(B\)为每一课\(A\)同学的成绩都不低于\(B\ ...

  3. P3270 [JLOI2016]成绩比较 容斥 数论 组合数学 拉格朗日插值

    LINK:成绩比较 大体思路不再赘述 这里只说几个我犯错的地方. 拉格朗日插值的时候 明明是n次多项式 我只带了n个值进去 导致一直GG. 拉格朗日插值的时候 由于是从1开始的 所以分母是\((i-1 ...

  4. 洛谷 P5400 - [CTS2019]随机立方体(组合数学+二项式反演)

    洛谷题面传送门 二项式反演好题. 首先看到"恰好 \(k\) 个极大值点",我们可以套路地想到二项式反演,具体来说我们记 \(f_i\) 为钦定 \(i\) 个点为极大值点的方案数 ...

  5. 洛谷 P1763 状态压缩dp+容斥原理

    (题目来自洛谷oj) 一天,maze决定对自己的一块n*m的土地进行修建.他希望这块土地共n*m个格子的高度分别是1,2,3,...,n*m-1,n*m.maze又希望能将这一些格子中的某一些拿来建蓄 ...

  6. 洛谷 P3267 - [JLOI2016/SHOI2016]侦察守卫(树形 dp)

    洛谷题面传送门 经典题一道,下次就称这种"覆盖距离不超过 xxx 的树形 dp"为<侦察守卫模型> 我们考虑树形 \(dp\),设 \(f_{x,j}\) 表示钦定了 ...

  7. 洛谷 P6276 - [USACO20OPEN]Exercise P(组合数学+DP)

    洛谷题面传送门 废了,又不会做/ll orz czx 写的什么神仙题解,根本看不懂(%%%%%%%%% 首先显然一个排列的贡献为其所有置换环的乘积.考虑如何算之. 碰到很多数的 LCM 之积只有两种可 ...

  8. 洛谷 P4708 - 画画(Burnside 引理+组合数学)

    洛谷题面传送门 神仙题 %%%%%%%%%%%%%%%%%%%% 题解搬运人来了 首先看到本质不同(无标号)的图计数咱们可以想到 Burnside 引理,具体来说,我们枚举一个排列 \(p\),并统计 ...

  9. bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法

    4559: [JLoi2016]成绩比较 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 261  Solved: 165[Submit][Status ...

随机推荐

  1. python使用Django框架开发简单项目

    一. (1)使用idea生成一个python项目,安装Django框架: pip install django==1.8.2 (2)初始化项目: django-admin startproject x ...

  2. Java版人脸检测详解上篇:运行环境的Docker镜像(CentOS+JDK+OpenCV)

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  3. Scrum Meeting 0509

    零.说明 日期:2021-5-9 任务:简要汇报两日内已完成任务,计划后两日完成任务 一.进度情况 组员 负责 两日内已完成的任务 后两日计划完成的任务 qsy PM&前端 测试 测试 cyy ...

  4. [技术博客]WEB实现划词右键操作

    [技术博客]WEB实现划词右键操作 一.功能解释 简单地对题目中描述的功能进行解释:在浏览器中,通过拖动鼠标选中一个词(或一段文字),右键弹出菜单,且菜单为自定义菜单,而非浏览器本身的菜单.类似的功能 ...

  5. Spring Cloud Alibaba 使用Nacos作为服务注册中心

    为什么需要注册中心? 在分布式架构中,服务会注册到这里,当服务需要调用其它服务时,就到这里找到服务的地址,进行调用:服务管理,核心是有个服务注册表,心跳机制动态维护 : 服务注册 创建普通Spring ...

  6. Noip模拟8 2021.6.17

    T1 星际旅行 仔细一看,发现像一个欧拉路(简称一笔画). 满足"可以一笔画"的条件是: 1.所有点都有偶数条连边; 2.有偶数个点连奇数条边; 满足以上两个条件的任意一个即可一笔 ...

  7. NB-IoT的DRX、eDRX、PSM三个模式怎么用?通俗解释,看完就懂!

    面我们讲了不少NB-IOT的应用.软件和硬件设计的变动. (链接在文章末尾). 今天讲讲NB-IoT的三大模式,在各种物联网和智能硬件场景中的使用方法 DRX.eDRx.PSM是什么? DRX虽然叫做 ...

  8. SprinMvc快速入门

    1.spring mvc Spring MVC是Spring Framework的一部分,是基于Java实现MVC的轻量级Web框架. 查看官方文档:https://docs.spring.io/sp ...

  9. [WPF] 使用三种方式实现弧形进度条

    1. 需求 前天看到有人问弧形进度条怎么做,我模仿了一下,成果如下图所示: 当时我第一反应是可以用 Microsoft.Toolkit.Uwp.UI.Controls 里的 RadialGauge 实 ...

  10. CSS学习笔记:浮动属性

    目录 一.浮动流是什么 二.通过代码实例了解浮动特点 1. 搭建测试框架 2. 添加浮动 3. 浮动元素的排布 4. 给行内元素添加浮动效果 5. 子元素浮动后对父元素的影响 5.1 在父元素中添加o ...