题面传送门

考虑容斥。我们记 \(a_i\) 为钦定 \(i\) 个人被 B 神碾压的方案数,如果我们已经求出了 \(a_i\) 那么一遍二项式反演即可求出答案,即 \(ans=\sum\limits_{i=k}^{n-1}a_i(-1)^{i-k}\dbinom{i}{k}\),于是现在问题转化为怎样求 \(a_i\)。首先我们肯定要从另外 \(n-1\) 个学生中选出这 \(i\) 个,方案数 \(\dbinom{n-1}{i}\),其次,根据“碾压”的定义,这 \(i\) 个学生在任何一门学科中的分数都 \(\le\) B 神的分数,也就是说对于任何一门学科 \(j\),都有这 \(i\) 个学生属于被 B 神吊打的 \(n-r_j\) 个学生中,故对于每一门学科,被被 B 神吊打的 \(n-r_j\) 个学生中有 \(i\) 个学生是确定的,我们只需另从 \(n-i-1\) 个学生中选出 \(n-r_j-i\) 即可,方案数为 \(\dbinom{n-i-1}{n-i-r_j}\),再其次,对每门学科我们要确定有多少种可能的分数,我们枚举 B 神的分数 \(l\),那么对于被 B 神吊打的 \(n-r_j\) 个学生,每个人都有 \(l\) 种可能的分数,方案数 \(l^{n-r_j}\),对于吊打 B 神的 \(r_j-1\) 个学生,每个人都有 \(u_j-l\) 种可能的分数,方案数 \((u_j-l)^{r_j-1}\),因此我们有:

\[a_i=\dbinom{n-1}{i}\prod\limits_{j=1}^m\dbinom{n-i-1}{n-i-r_j}\sum\limits_{l=1}^{u_j}l^{n-r_j}(u_j-l)^{r_j-1}
\]

由于这题 \(u_i\) 很大,直接算显然无法通过,不过注意到后面那坨东西 \(\sum\limits_{l=1}^{u_j}l^{n-r_j}(u_j-l)^{r_j-1}\) 是与 \(i\) 严格无关的,因此考虑将这东西预处理出来。怎么预处理呢,考虑将这东西用二项式定理展开变个形,具体来说:

\[\begin{aligned}
&\sum\limits_{l=1}^{u_j}l^{n-r_j}(u_j-l)^{r_j-1}\\
=&\sum\limits_{l=1}^{u_j}l^{n-r_j}\sum\limits_{t=0}^{r_j-1}u_j^t(-l)^{r_j-1-t}\dbinom{r_i-1}{t}\\
=&\sum\limits_{t=0}^{r_j-1}u_j^t\dbinom{r_i-1}{t}\sum\limits_{l=1}^{u_j}l^{n-r_j}(-l)^{r_j-1-t}\\
=&\sum\limits_{t=0}^{r_j-1}u_j^t\dbinom{r_i-1}{t}(-1)^{r_i-1-t}\sum\limits_{l=1}^{u_j}l^{n-1-t}
\end{aligned}
\]

芜湖~好了,前面枚举复杂度显然不会爆,后面那东西是自然数 \(k\) 次幂之和的形式,可以拉格朗日插值求出,于是复杂度就降到了 \(n^2m\),可以通过此题。

const int MAXN=100;
const int MOD=1e9+7;
int qpow(int x,int e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
int n,m,k,u[MAXN+5],r[MAXN+5],s[MAXN+5],f[MAXN+5],fac[MAXN+5],ifac[MAXN+5];
void init_fac(int mx){
for(int i=(fac[0]=ifac[0]=ifac[1]=1)+1;i<=mx;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=mx;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i-1]*ifac[i]%MOD;
}
int binom(int n,int k){
if(n<0||k<0||n<k) return 0;
return 1ll*fac[n]*ifac[k]%MOD*ifac[n-k]%MOD;
}
int sum[MAXN+5],pre[MAXN+5],suf[MAXN+5];
int calc(int n,int k){
for(int i=1;i<=k+1;i++) sum[i]=(sum[i-1]+qpow(i,k))%MOD;
pre[0]=n;for(int i=1;i<=k+1;i++) pre[i]=1ll*pre[i-1]*(n-i+MOD)%MOD;
suf[k+2]=1;for(int i=k+1;~i;i--) suf[i]=1ll*suf[i+1]*(n-i+MOD)%MOD;
int ans=0;
for(int i=1;i<=k+1;i++){
int mul=1ll*sum[i]*pre[i-1]%MOD*suf[i+1]%MOD*ifac[i]%MOD*ifac[k+1-i]%MOD;
if((k+1-i)&1) ans=(ans-mul+MOD)%MOD;else ans=(ans+mul)%MOD;
} return ans;
}
int main(){
scanf("%d%d%d",&n,&m,&k);init_fac(n+1);
for(int i=1;i<=m;i++) scanf("%d",&u[i]);
for(int i=1;i<=m;i++) scanf("%d",&r[i]);
for(int i=1;i<=m;i++) for(int l=0;l<r[i];l++){
int mul=1ll*binom(r[i]-1,l)*qpow(u[i],l)%MOD*calc(u[i],n-1-l)%MOD;
if((r[i]-1-l)&1) s[i]=(s[i]-mul+MOD)%MOD;else s[i]=(s[i]+mul)%MOD;
} int ans=0;
for(int i=k;i<n;i++){
int mul=binom(n-1,i);
for(int j=1;j<=m;j++) mul=1ll*mul*binom(n-i-1,n-r[j]-i)%MOD*s[j]%MOD;
if((i-k)&1) ans=(ans-1ll*mul*binom(i,k)%MOD+MOD)%MOD;
else ans=(ans+1ll*mul*binom(i,k)%MOD)%MOD;
} printf("%d\n",ans);
return 0;
}

洛谷 P3270 - [JLOI2016]成绩比较(容斥原理+组合数学+拉格朗日插值)的更多相关文章

  1. 洛谷 P5469 - [NOI2019] 机器人(区间 dp+拉格朗日插值)

    洛谷题面传送门 神仙题,放在 D1T2 可能略难了一点( 首先显然对于 P 型机器人而言,将它放在 \(i\) 之后它会走到左边第一个严格 \(>a_i\) 的位置,对于 Q 型机器人而言,将它 ...

  2. 【bzoj4559】[JLoi2016]成绩比较(dp+拉格朗日插值)

    bzoj 题意: 有\(n\)位同学,\(m\)门课. 一位同学在第\(i\)门课上面获得的分数上限为\(u_i\). 定义同学\(A\)碾压同学\(B\)为每一课\(A\)同学的成绩都不低于\(B\ ...

  3. P3270 [JLOI2016]成绩比较 容斥 数论 组合数学 拉格朗日插值

    LINK:成绩比较 大体思路不再赘述 这里只说几个我犯错的地方. 拉格朗日插值的时候 明明是n次多项式 我只带了n个值进去 导致一直GG. 拉格朗日插值的时候 由于是从1开始的 所以分母是\((i-1 ...

  4. 洛谷 P5400 - [CTS2019]随机立方体(组合数学+二项式反演)

    洛谷题面传送门 二项式反演好题. 首先看到"恰好 \(k\) 个极大值点",我们可以套路地想到二项式反演,具体来说我们记 \(f_i\) 为钦定 \(i\) 个点为极大值点的方案数 ...

  5. 洛谷 P1763 状态压缩dp+容斥原理

    (题目来自洛谷oj) 一天,maze决定对自己的一块n*m的土地进行修建.他希望这块土地共n*m个格子的高度分别是1,2,3,...,n*m-1,n*m.maze又希望能将这一些格子中的某一些拿来建蓄 ...

  6. 洛谷 P3267 - [JLOI2016/SHOI2016]侦察守卫(树形 dp)

    洛谷题面传送门 经典题一道,下次就称这种"覆盖距离不超过 xxx 的树形 dp"为<侦察守卫模型> 我们考虑树形 \(dp\),设 \(f_{x,j}\) 表示钦定了 ...

  7. 洛谷 P6276 - [USACO20OPEN]Exercise P(组合数学+DP)

    洛谷题面传送门 废了,又不会做/ll orz czx 写的什么神仙题解,根本看不懂(%%%%%%%%% 首先显然一个排列的贡献为其所有置换环的乘积.考虑如何算之. 碰到很多数的 LCM 之积只有两种可 ...

  8. 洛谷 P4708 - 画画(Burnside 引理+组合数学)

    洛谷题面传送门 神仙题 %%%%%%%%%%%%%%%%%%%% 题解搬运人来了 首先看到本质不同(无标号)的图计数咱们可以想到 Burnside 引理,具体来说,我们枚举一个排列 \(p\),并统计 ...

  9. bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法

    4559: [JLoi2016]成绩比较 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 261  Solved: 165[Submit][Status ...

随机推荐

  1. Java中的函数式编程(四)方法引用method reference

    写在前面 我们已经知道,lambda表达式是一个匿名函数,可以用lambda表达式来实现一个函数式接口.   很自然的,我们会想到类的方法也是函数,本质上和lambda表达式是一样的,那是否也可以用类 ...

  2. 记一次关于pdf 下载需求变更到 pdf 在线预览

    背景: 之前的需求是根据接口中提供的Blob数据实现PDF下载,已实现代码如下: 1 const url = window.URL.createObjectURL(newBlob([response. ...

  3. Beta_Scrum Meeting_2

    会议概要 日期:2021年5月30日 出席人员:除zwh以外的所有人员 会议概述:讨论前两天工作进度以及后两天工作计划 人员分工 组员 负责 前两日完成的工作 后两日即将完成的工作 遇到的困难 hcc ...

  4. 鸿蒙轻内核M核的故障管家:Fault异常处理

    摘要:本文先简单介绍下Fault异常类型,向量表及其代码,异常处理C语言程序,然后详细分析下异常处理汇编函数实现代码. 本文分享自华为云社区<鸿蒙轻内核M核源码分析系列十八 Fault异常处理& ...

  5. IdentityServer4 负载均衡配置

    在不用到负载之前,一切都很好,但是部署多个实例之后,问题挺多的:session问题.令牌签发后的校验问题. 在此之前,先自查官方文档:Deployment - IdentityServer4 1.0. ...

  6. RGB-YUV

    1,RGB 1.1 RGB说明 RGB色彩模式是工业界的一种颜色标准,是通过对红(R).绿(G).蓝(B)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色的,RGB即是代表红.绿.蓝三个通 ...

  7. hdu 2189 来生一起走(DP)

    题意: 有N个志愿者.指挥部需要将他们分成若干组,但要求每个组的人数必须为素数.问不同的方案总共有多少.(N个志愿者无差别,即每个组的惟一标识是:人数) 思路: 假设N个人可分为K组,将这K组的人数从 ...

  8. POJ 3692 Kindergarten(二分图最大独立集)

    题意: 有G个女孩,B个男孩.女孩彼此互相认识,男孩也彼此互相认识.有M对男孩和女孩是认识的.分别是(g1,b1),.....(gm,bm). 现在老师要在这G+B个小孩中挑出一些人,条件是这些人都互 ...

  9. cf 24 Game (观察+.. 想一想)

    题意: 给一个数N,从1到N. 每次取两个数,三种操作:加.减.乘,运算完得一个数,把那俩数删了,把这个数加进去. 重复操作N-1次. 问是否可能得到24.若可以,输出每一步操作. 思路: 小于4,不 ...

  10. [源码解析] PyTorch 分布式(1)------历史和概述

    [源码解析] PyTorch 分布式(1)------历史和概述 目录 [源码解析] PyTorch 分布式(1)------历史和概述 0x00 摘要 0x01 PyTorch分布式的历史 1.1 ...