题目传送门

题意简述:有 \(n\) 个数 \(a_1,a_2,\cdots a_n\),等概率选取区间 \(P_1,S_1\subseteq [1,n]\),\(P_2\subseteq P_1\),\(S_2\subseteq S_1\)。定义 \(f(X,Y)\) 为互不相同的 \(a_i\ (i\in X,a_i\in Y)\) 的个数,求 \(\Delta=F(P_1,S_1)-F(P_2,S_2)\) 的等权重平均,即所有可能方案的 \(\Delta\) 之和除以方案总数。

\(1\leq n,a_i\leq 5\times 10^5\)。


写在开头的一些定义:

下文中,定义 \(s_i\) 表示前 \(i\) 个正整数之和,即 \(\sum_{j=1}^ij\);定义 \(sq_i\) 表示前 \(i\) 个正整数的平方和,即 \(\sum_{j=1}^ij^2\)。


首先假设 \(a_i\) 互不相同,那么显然每个数对答案的贡献独立。对于第 \(i\) 个数 \(a_i\),我们单独讨论其贡献。

  • 先求 \(a_i\) 对 \(F(P_2,S_2)\) 的贡献:所有 \(i\in P_2,a_i\in S_2\) 的方案总数。

    不难发现对编号 \(i\) 的限制与对数值 \(a_i\) 的限制是独立的。那么根据乘法原理,它可以写成 \(f_2(i)\times g_2(a_i)\) 的形式,其中 \(f_2(i)\) 表示 \(i\in P_2\) 的方案总数,\(g_2(a_i)\) 表示 \(a_i\in S_2\) 的方案总数。同时,又因为 \(P_2\) 与 \(S_2\) 的定义相同,所以函数 \(f_2\) 与 \(g_2\) 等价,即 \(f_2=g_2\)。

    根据 \(f_2\) 和 \(S_2\) 的定义,\(f_2(i)\) 表示 \(i\in P_2\subseteq P_1\subseteq [1,n]\) 的总情况数。不妨反过来考虑,将其定义为在位置 \(i\) 两侧嵌套两层括号的总方案数。不难发现左右括号相互独立。先考虑左括号:当第一层左括号在 \(j\) 两侧时,第二层括号只能套在 \([1,j]\) 的左侧,即 \(\sum_{j=1}^ij\),即 \(s_j\)。同理可求得右括号的方案数为 \(s_{n-j+1}\)。

    实际上,我是先打表找出规律才想到了这个实际意义。

    这样我们就有了 \(f_2\) 的表达式,即 \(f_2(i)=s_is_{n-i+1}\)。由此推出 \(a_i\) 对 \(F(P_2,S_2)\) 的贡献,即 \(f_2(i)f_2(a_i)=s_is_{n-i+1}s_{a_i}s_{n-a_i+1}\)。

  • 再求 \(a_i\) 对 \(F(P_1,S_1)\) 的贡献:所有 \(i\in P_1,a_i\in S_1\) 的方案总数。注意此时每一个区间 \(P_1(S_1)\) 并不是只计算一次,还应考虑到其子区间 \(P_2(S_2)\) 的个数

    如法炮制,设贡献为 \(f_1(i)\times g_1(a_i)\),其中 \(f_1(i),g_1(a_i)\) 分别表示 \(i\in P_1,a_i\in S_1\) 的情况总数。梅开二度, 同理可得 \(f_1=g_1\)。根据其实际意义,枚举 \(P_1\) 左端点 \(l\ (l\leq i)\) 和右端点 \(r\ (i\leq r)\),再乘上其子区间个数,可得表达式:

    \[f_1(i)=\sum_{l=1}^i\sum_{r=i}^n\binom{r-l+2}{2}.
    \]

    注意此处 \(r-l+2\) 是因为区间 \(P_1\) 长度为 \(r-l+1\),而长度为 \(len\) 的区间共有 \(\binom{len+1}{2}\) 个子区间。将 \(\dfrac{1}{2}\) 提出,上式即:

    \[\frac{1}{2}\sum_{l=1}^i\sum_{r=i}^n(r-l+2)(r-l+1).
    \]

    拆开,可以得到:

    \[\frac{1}{2}\sum_{l=1}^i\sum_{r=i}^nr^2+l^2-2lr+3r-3l+2.
    \]

    别跟我说这你不会 \(\mathcal{O}(n)\) 预处理 \(\mathcal{O}(1)\) 求。 分别化简一下,实际上就是:

    \[\begin{aligned}2f_1(i)=&i(sq_n-sq_{i-1})+sq_i(n-i+1)-2s_i(s_n-s_{i-1})\\&+3i(s_n-s_{i-1})-3s_i(n-i+1)+2i(n-i+1)\end{aligned}.
    \]

    大功告成,这样 \(a_i\) 对 \(F(P_1,S_1)\) 的贡献即为 \(f_1(i)f_1(a_i)\)。


看似我们已经成功解决了这道题目,但实际上并没有。注意到题目并没有保证 \(a_i\) 互不相同。

假设如果有多个相等的数 \(a_{i_1}=a_{i_2}=\cdots=a_{i_c}\) 同时满足条件,那么不妨设只有最左边的数会对答案产生贡献。 但即便是这样,也不得不更新一下 \(f_1,f_2\) 的求法。

  • 实际上,只有对位置上的限制的总情况 \((i\in P_1(P_2))\) 需要重新计算,而对数值上的限制 \((a_i\in S_1(S_2))\) 并不需要,读者可自行思考。

根据上述假设,不难发现如果 \(a_i=a_j\ (i<j)\),那么 \(a_j\) 对所有左端点在 \(i\) 左边的 \(P_1(P_2)\) 都不会产生贡献。因此我们设 \(f_1'(pre,i)\) 表示 \(P_1\) 左端点在 \(pre\) 右侧的总情况数。有了求 \(f_1\) 的经验,不难写出 \(f_1'\) 的表达式:

\[f_1'(pre,i)=\sum_{l=pre+1}^i\sum_{r=i}^n\binom{r-l+2}{2}
\]

对比 \(f_1(i)\),可以发现 \(f_1'\) 相较于 \(f_1\) 只有左端点 \(l\) 的下界改变,即\(f_1(i)=f_1'(1,i)\)。类似的,不难得到其化简后的结果,方便 \(\mathcal{O}(1)\) 计算。请读者自行推导,此处不再赘述。

因此,\(a_i\) 对 \(F(P_1,S_1)\) 的贡献可以写为 \(f_1'(pre_i,i)\times f_1(a_i)\),其中 \(pre_i\) 为在 \(a_i\) 之前与 \(a_i\) 相等的最右边一个数的位置,若不存在则为 \(0\)。

同理,不难推出 \(f_2'(pre,i)\) 的表达式:因为 “嵌套的第一层左括号” 只能在 \(pre\) 右边,\(i\) 左边,因此可写出 \(f_2'(pre,i)=\sum_{j=pre+1}^ij\)。同样的,观察 \(f_2(i)\),可以发现 \(f_2'\) 相较于 \(f_2\) 只有左端点 \(l\) 的下界改变,即 \(f_2(i)=f_2'(1,i)\)。

综上,\(a_i\) 对答案的贡献可以写为 \(f_1'(pre_i,i)\times f_1(a_i)-f_2'(pre_i,i)\times f_2(a_i)\)。


结束了吗?还差一点。求出了 \(a_i\) 的总方案数,还需要求 \(P_1,P_2,S_1,S_2\) 的总方案数。由于 \(P_1,P_2\) 与 \(S_1,S_2\) 在定义上等价,因此可以单独算出 \(P_1,P_2\) 的总方案数 \(cnt\),再将其平方即可得到四个区间的总方案数。这也是为什么三个样例的分母都是平方数,给分数不约分的良心出题人点赞!

不妨枚举 \(P_1\) 的长度 \(len\),则 \(P_1\) 共有 \(n-len+1\) 种情况,此时其子区间 \(P_2\) 有 \(\binom{len+1}{2}\) 中情况。根据定义,不难发现 \(s_i\) 等价于 \(\binom{i+1}{2}\),因此有:

\[cnt=\sum_{i=1}^n(n-i+1)s_i.
\]

至此,本题被我们解决。


时间复杂度:预处理 \(\mathcal{O}(n)\),计算每个数的贡献 \(n\times\mathcal{O}(1)=\mathcal{O}(n)\),计算总情况数 \(\mathcal{O}(n)\)。

因此,总时空复杂度 \(\mathcal{O}(n)\)。


代码说明:

  • cals/calsq(l,r) 表示求 \(s(sq)\) 在 \([l,r]\) 上的和。
  • f1/f2(l,k) 表示求 \(f_1'(f_2')(l-1,k)\)。注意代码与实际定义的区别(代码中 \(pre_i\) 表示在 \(a_i\) 前与 \(a_i\) 相同的最右边的数的位置 \(+1\))
#include <bits/stdc++.h>
using namespace std; using ll = long long;
const int mod=1e9+7;
const ll iv2=mod+1>>1; ll ksm(ll a,ll b){
ll s=1,m=a;
while(b){
if(b&1)s=s*m%mod;
m=m*m%mod,b>>=1;
} return s;
} ll inv(ll x){return ksm(x,mod-2);} const int N=5e5+5;
ll n,a,ans,cnt,buc[N],s[N],sq[N];
ll cals(ll l,ll r){return (s[r]-s[l-1]+mod)%mod;}
ll calsq(ll l,ll r){return (sq[r]-sq[l-1]+mod)%mod;}
ll f1(ll l,ll k){
return ((calsq(l,k)*(n-k+1)+calsq(k,n)*(k-l+1)
-2*cals(l,k)*cals(k,n)%mod-3*cals(l,k)*(n-k+1)%mod
+3*cals(k,n)*(k-l+1)+2*(n-k+1)*(k-l+1))%mod+mod)*iv2%mod;
} ll f2(ll l,ll k){return cals(l,k)*s[n-k+1]%mod;} int main(){
cin>>n;
for(ll i=1;i<=n;i++)s[i]=(s[i-1]+i)%mod,sq[i]=(sq[i-1]+i*i)%mod;
for(ll i=1,pre;i<=n;i++){
scanf("%lld",&a),pre=buc[a]+1,buc[a]=i;
ans=(ans+f1(pre,i)*f1(1,a)-f2(pre,i)*f2(1,a)%mod+mod)%mod;
cnt=(cnt+(n-i+1)*s[i])%mod;
} cout<<ans*inv(cnt*cnt%mod)%mod<<endl;
return 0;
}

P7327 Dream and Discs的更多相关文章

  1. PK淘宝BUY+,京东推出AR购物应用JD Dream

        今年双十一淘宝推出了虚拟现实VR购物"BUY+",用户可以在虚拟环境中选购商品.那作为竞争对手的京东将使出什么绝招呢?在近日上海举办的谷歌开发者大会上得到了答案.会上京东推 ...

  2. [poj2411] Mondriaan's Dream (状压DP)

    状压DP Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nigh ...

  3. Dream It Possible

    反复听着Dream It Possible,想起自己的华为岁月,百感交集!

  4. POJ 题目2411 Mondriaan's Dream(状压DP)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 13519   Accepted: 787 ...

  5. 第一篇英文短文《It All Starts With A Dream》

    http://www.ximalaya.com/#/17209107/sound/6883165 Dreaming. Do you or don’t you? Do you dream about t ...

  6. POJ 2411 Mondriaan&#39;s Dream

    状压DP Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 9938 Accepted: 575 ...

  7. HDU 4686 Arc of Dream (矩阵快速幂)

    Arc of Dream Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tota ...

  8. 状态压缩DP--Mondriaan's Dream

    题目网址:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=110044#problem/A Description Squares and ...

  9. POJ2411 Mondriaan's Dream

    Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, af ...

随机推荐

  1. Spring Security Jwt Token 自动刷新

    token的自动刷新 一.功能需求 二.功能分析 1.token 的生成 2.token 的自动延长 3.系统资源的保护 4.用户如何传递 token 三.实现思路 1.生成 token 和 refr ...

  2. Qt学习-模仿Qt实现一个colorbutton

    1.mycolorbutton.h #include<QToolButton> #include<QtGlobal> #include<QColor> class ...

  3. Spring MVC:HandlerMapping

    HandlerMapping 的类图 Spring中存在两种类型的handlers.第一种是 handler mappings(处理程序映射).它们的角色定位与前面所描述的功能完全相同.它们尝试将当前 ...

  4. vim实用插件

    转载:Vim 实用插件推荐(2017) - 知乎 (zhihu.com) 1.插件管理器 ----------------------------------------- Vundle.vim - ...

  5. Python super(Todo,self).__init__() TypeError: super() argument 1 must be type, not classobj

    示例如下 class A(): def __init__(self):pass class B(A): def __init__(self): super(A, self).__init__() 当调 ...

  6. cf12E Start of the season(构造,,,)

    题意: 给一个偶数N. 构造出一个矩阵. 满足:主对角线上全为0.每一行是0~N-1的一个全排列.矩阵关于主对角线对称. 思路: 觉得是智商题,,,,看完题解后觉得不难,但是我就是没想出来.只想到了前 ...

  7. Webshell 一句话木马

    Webshell介绍 什么是 WebShell webshell就是以asp.php.jsp或者cgj等网页文件形式存在的一种命令执行环境,也可以将其称做为一种网页后门 由于 webshell其大多是 ...

  8. Qt 隐藏标题栏后实现窗口拖动、设置窗口透明

    隐藏标题栏 setWindowFlags(Qt::CustomizeWindowHint); setWindowFlags(Qt::FramelessWindowHint); 两个函数都可以去掉标题栏 ...

  9. 了解一下Git的常用语句

    简单学习了一下Git,整理了一点常用语句 http连接 git clone https://仓库地址 连接githup cd shop 进入文件夹 git config --global user.n ...

  10. Python MySSH 实现剧本执行器

    通过封装Paramiko这个SSH模块,我们可以实现远程批量管理Linux主机,在上一篇文章中我们封装过一个MySSH类,这个类可以执行命令上传下载文件等,我们在这个类的基础上,实现一个简单的任务执行 ...