LOJ 题面传送门 / 洛谷题面传送门

题意:

  • 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数。
  • \(n,m \leq 5 \times 10^4\)。

抛出一个引理:\(d(ij)=\sum\limits_{x|i}\sum\limits_{y|j}[\gcd(x,y)=1]\),该定理将在这篇博客结束证明。

知道这个定理之后,就可以按照套路开始推式子了:

\[\begin{aligned}&ans=\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\\&=\sum\limits_{i=1}^n\sum\limits_{j=1}^m\sum\limits_{x|i}\sum\limits_{y|j}[\gcd(x,y)=1]\\&=\sum\limits_{x=1}^n\sum\limits_{y=1}^m\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor\times[\gcd(x,y)=1]\\&=\sum\limits_{x=1}^n\sum\limits_{y=1}^m\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor\times\sum\limits_{p|\gcd(x,y)}\mu(p)\\&=\sum\limits_{p=1}^{\min(n,m)}\mu(p)\times\sum\limits_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{p}\rfloor}\lfloor\frac{n}{ip}\rfloor\lfloor\frac{m}{jp}\rfloor\\&=\sum\limits_{p=1}^{\min(n,m)}\mu(p)\times\sum\limits_{i=1}^{\lfloor\frac{n}{p}\rfloor}\lfloor\frac{n}{ip}\rfloor\times\sum\limits_{j=1}^{\lfloor\frac{m}{p}\rfloor}\lfloor\frac{m}{jp}\rfloor\end{aligned}
\]

令 \(t(x)=\sum\limits_{i=1}^x\lfloor\frac{x}{i}\rfloor\),则原式进一步转化为 \(\sum\limits_{p=1}^{\min(n,m)}\mu(p)\times t(\lfloor\frac{n}{p}\rfloor)\times t(\lfloor\frac{m}{p}\rfloor)\)。

整除分块预处理出 \(t(x)\),这样可以 \(\mathcal O(1)\) 求出 \(\sum\) 里面那堆东西。外面再套个整除分块就可以过了。时间复杂度 \(\mathcal O(T\sqrt{n}+n\sqrt{n})\)


最后再证明一下 \(d(ij)=\sum\limits_{x|i}\sum\limits_{y|j}[\gcd(x,y)=1]\):

假设 \(i,j\) 总共含有 \(p_1,p_2,\dots,p_k\) 这 \(k\) 个质因子,\(ij\) 有一个因子 \(c\)。

我们需证明每个 \(c\) 与一个互质数对 \((a,b)\ \ (a|i,b|j)\) 一一对应。

对于质因子 \(p_t\),假设 \(i\) 中包含 \(p_t^{x_1}\),\(j\) 中包含 \(p_t^{x_2}\),\(c\) 中包含 \(p_t^{x_3}\),显然 \(x_3 \leq x_1+x_2\)

如果 \(x_3 \leq x_1\),那么我们就在 \(a\) 中分配 \(p_t^{x_3}\)。

如果 \(x_3 > x_1\),那么我们就在 \(b\) 中分配 \(p_t^{x_3-x_1}\)。

显然 \(a,b\) 中最多一个包含质因子 \(p_t\),故 \(\gcd(a,b)=1\)。而每个 \(p_t\) 的分配方式又对应着一个 \(c\),故每个 \(c\) 与一个互质数对 \((a,b)\ \ (a|i,b|j)\) 一一对应,原命题得证。

/*
Contest: -
Problem: P3327
Author: tzc_wk
Time: 2020.9.1
*/
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define foreach(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define all(a) a.begin(),a.end()
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,0x3f,sizeof(a))
#define y1 y1010101010101
#define y0 y0101010101010
typedef pair<int,int> pii;
typedef long long ll;
inline int read(){
int x=0,neg=1;char c=getchar();
while(!isdigit(c)){
if(c=='-') neg=-1;
c=getchar();
}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x*neg;
}
bool vis[50005];
ll mu[50005],pri[50005],sum[50005],pcnt=0;
inline void get_mu(){
mu[1]=1;
for(int i=2;i<=50000;i++){
if(!vis[i]){mu[i]=-1;pri[++pcnt]=i;}
for(int j=1;j<=pcnt&&pri[j]*i<=50000;j++){
vis[i*pri[j]]=1;
if(i%pri[j]==0) break;
else mu[pri[j]*i]=-mu[i];
}
}
for(int i=1;i<=50000;i++) sum[i]=sum[i-1]+mu[i];
}
inline ll calc(int x){
ll ans=0;for(int l=1,r;l<=x;l=r+1){
r=x/(x/l);
ans+=1ll*(r-l+1)*(x/l);
}
return ans;
}
int t[50005];
int main(){
get_mu();fz(i,1,50000) t[i]=calc(i);
int T=read();while(T--){
int n=read(),m=read();ll ans=0;
if(n>m) n^=m^=n^=m;
for(int l=1,r;l<=n;l=r+1){
r=min(n/(n/l),m/(m/l));
ans+=(sum[r]-sum[l-1])*t[n/l]*t[m/l];
}
printf("%lld\n",ans);
}
return 0;
}

LOJ #2185 / 洛谷 P3329 - [SDOI2015]约数个数和(莫比乌斯函数)的更多相关文章

  1. 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)

    题目描述 设d(x)为x的约数个数,给定N.M,求 \sum^N_{i=1}\sum^M_{j=1}d(ij)∑i=1N​∑j=1M​d(ij) 输入输出格式 输入格式: 输入文件包含多组测试数据.第 ...

  2. 洛谷P3327 - [SDOI2015]约数个数和

    Portal Description 共\(T(T\leq5\times10^4)\)组数据.给出\(n,m(n,m\leq5\times10^4)\),求\[\sum_{i=1}^n\sum_{j= ...

  3. 洛谷P3327 [SDOI2015]约数个数和 【莫比乌斯反演】

    题目 设d(x)为x的约数个数,给定N.M,求\(\sum_{i = 1}^{N} \sum_{j = 1}^{M} d(ij)\) 输入格式 输入文件包含多组测试数据.第一行,一个整数T,表示测试数 ...

  4. 洛谷 P3327 [SDOI2015]约数个数和 || Number Challenge Codeforces - 235E

    https://www.luogu.org/problemnew/show/P3327 不会做. 去搜题解...为什么题解都用了一个奇怪的公式?太奇怪了啊... 公式是这样的: $d(xy)=\sum ...

  5. 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)

    传送门 公式太长了……我就直接抄一下这位大佬好了……实在懒得打了 首先据说$d(ij)$有个性质$$d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]$$ 我们所求的答案为$ ...

  6. P3327 [SDOI2015]约数个数和 莫比乌斯反演

    P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...

  7. 【BZOJ3994】[SDOI2015]约数个数和 莫比乌斯反演

    [BZOJ3994][SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组 ...

  8. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

  9. 洛谷$P$3327 约数个数和 $[SDOI2015]$ 莫比乌斯反演

    正解:莫比乌斯反演 解题报告: 传送门! 先考虑证明一个结论,$d_{i\cdot j}=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1]$ 看起来就很对的样子,但还是证下趴$QwQ ...

随机推荐

  1. Pycharm无法打开,双击没反应

    以下方案皆为引用,仅供参考. 方案一: 1.先声明一下,这种解决方法适用于任何版本的永久破解启动不了的情况(包括:2019版本的)2.下面直接切入正题之所以我们破解之后,不能正常启动的原因有两种:① ...

  2. Golang通脉之类型定义

    自定义类型 在Go语言中有一些基本的数据类型,如string.整型.浮点型.布尔等数据类型, Go语言中可以使用type关键字来定义自定义类型. type是Go语法里的重要而且常用的关键字,type绝 ...

  3. 【UE4 C++】Tick的三种方式、异步蓝图节点

    Tick的三种方式 包括 默认 Tick (Actor.Component.UMG) TimerManager 定时器 FTickableGameObject 可以写原生 Object 也可以继承UO ...

  4. UML快速概述 - All you need to know about UML

    UML 是统一建模语言的缩写,就像使用一组图表来可视化软件建模的蓝图(或设计计划).它不仅可以让您彻底评估整个概念,还可以确保团队中的每个人都在同一页面上.   UML 图可以组织成两个不同的组. 结 ...

  5. 数列极限计算中运用皮亚诺Taylor展开巧解

    这是讲义里比较精华的几个题目,今晚翻看也是想到了,总结出来(处理k/n2形式). 推广式子如下: 例题如下:

  6. 51nod_1003 阶乘后面0的数量(求N!中5的个数,数论)

    题意: n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720,720后面有1个0.   Input 一个数N(1 <= N <= 10^9) OutPut 输出0的数 ...

  7. hdu 4771 Stealing Harry Potter's Precious (BFS+状压)

    题意: n*m的迷宫,有一些格能走("."),有一些格不能走("#").起始点为"@". 有K个物体.(K<=4),每个物体都是放在& ...

  8. linux 内核源代码情景分析——用户堆栈的扩展

    上一节中,我们浏览了一次因越界访问而造成映射失败从而引起进程流产的过程,不过有时候,越界访问时正常的.现在我们就来看看当用户堆栈过小,但是因越界访问而"因祸得福"得以伸展的情景. ...

  9. PicGo插件

    前言:主要介绍PicGo插件,这里的图床上传软件是PicGo-Core,使用命令行操作 PicGo_Path:自己的PicGo安装路径,如果通过Typora一般安装位置位于 C:\Users\自己的主 ...

  10. 记一次排查CPU高的问题

    背景 将log4j.xml的日志级别从error调整为info后,进行压测发现CPU占用很高达到了90%多(之前也就是50%,60%的样子). 问题排查 排查思路:  看进程中的线程到底执行的是什么, ...