bzoj1497 最大获利(最大权闭合子图)
思路
对于每个中转站向\(T\)连一条权值为建这个中转站代价的边。割掉这条边表示会建这个中转站。
对于每个人向他的两个中转站连一条权值为\(INF\)的边。然后从\(S\)向这个人连一条权值为这个人的收益的边,割掉这条边表示不要这个收益。
这就是最大权闭合子图的模型。
最后的答案=全部的收益-割掉的收益-建中转站的代价=全部收益-最小割
代码
#include<cstring>
#include<algorithm>
#include<queue>
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<bitset>
using namespace std;
typedef long long ll;
const int N = 100010,M = 1000010,INF = 1e9;
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
struct node {
int v,nxt,w;
}e[M << 1];
int head[N],ejs = 1;
void add(int u,int v,int w) {
e[++ejs].v = v;e[ejs].nxt = head[u];head[u] = ejs;e[ejs].w = w;
e[++ejs].v = u;e[ejs].nxt = head[v];head[v] = ejs;e[ejs].w = 0;
}
int S,T;
int n,m,cur[N];
queue<int>q;
int dep[N];
int bfs() {
while(!q.empty()) q.pop();
memset(dep,0,sizeof(dep));
dep[S] = 1;q.push(S);
while(!q.empty()) {
int u = q.front();q.pop();
for(int i = head[u];i;i = e[i].nxt) {
int v = e[i].v;
if(!dep[v] && e[i].w) {
dep[v] = dep[u] + 1;q.push(v);
if(v == T) return 1;
}
}
}
return 0;
}
int dfs(int u,int now) {
if(u == T) return now;
int ret = 0;
for(int &i = cur[u];i;i = e[i].nxt) {
int v = e[i].v;
if(dep[v] == dep[u] + 1 && e[i].w) {
int k = dfs(v,min(now - ret,e[i].w));
ret += k;
e[i].w -= k;
e[i ^ 1].w += k;
if(ret == now) return ret;
}
}
return ret;
}
int dinic() {
int ans = 0;
while(bfs()) {
for(int i = 1;i <= T;++i) cur[i] = head[i];
ans += dfs(S,INF);
}
return ans;
}
int main() {
n = read(),m = read();
T = n + m + 2,S = T - 1;
int tot = 0;
for(int i = 1;i <= n;++i) {
int w = read();
add(i,T,w);
}
for(int i = 1;i <= m;++i) {
int x = read(),y = read(),w = read();
add(i + n,x,INF);add(i + n,y,INF);
add(S,i + n,w);
tot += w;
}
cout<<tot - dinic();
return 0;
}
bzoj1497 最大获利(最大权闭合子图)的更多相关文章
- P4174 [NOI2006]最大获利 (最大权闭合子图)
P4174 [NOI2006]最大获利 (最大权闭合子图) 题目链接 题意 建\(i\)站台需要\(p_i\)的花费,当\(A_i,B_i\)都建立时获得\(C_i\)的利润,求最大的利润 思路 最大 ...
- BZOJ1497[NOI2006]最大获利——最大权闭合子图
题目描述 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成 ...
- bzoj1497 [NOI2006]最大获利 最大权闭合子图
链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1497 思路 最大权闭合子图的裸题 一开始知道是这个最大权闭合子图(虽然我不知道名字),但是我 ...
- 【BZOJ】1497: [NOI2006]最大获利 最大权闭合子图或最小割
[题意]给定n个点,点权为pi.m条边,边权为ci.选择一个点集的收益是在[点集中的边权和]-[点集点权和],求最大获利.n<=5000,m<=50000,0<=ci,pi<= ...
- COGS28 [NOI2006] 最大获利[最大权闭合子图]
[NOI2006] 最大获利 ★★★☆ 输入文件:profit.in 输出文件:profit.out 简单对比时间限制:2 s 内存限制:512 MB [问题描述] 新的技术正冲击着手 ...
- BZOJ 1497 最大获利(最大权闭合子图)
http://www.lydsy.com/JudgeOnline/problem.php?id=1497 思路:由题意可以得知,每个顾客都依赖2个中转站,那么让中转站连有向边到汇点,流量为它的建设费用 ...
- 【最大权闭合子图】BZOJ1497[NOI2006]-最大获利
[题目大意] 建立第i个通讯中转站需要的成本为Pi(1≤i≤N).另外公司调查得出了所有期望中的用户群,一共M个.关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进 ...
- 【最大权闭合子图 最小割】bzoj1497: [NOI2006]最大获利
最大权闭合子图的模型:今天才发现dinic板子是一直挂的…… Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在 ...
- bzoj1497: [NOI2006]最大获利(最大权闭合子图)
1497: [NOI2006]最大获利 题目:传送门 题解: %%%关于最大权闭合子图很好的入门题 简单说一下什么叫最大权闭合子图吧...最简单的解释就是正权边连源点,负权边连汇点(注意把边权改为正数 ...
随机推荐
- Failed to bind properties under 'spring.datasource' to javax.sql.DataSource
这是我的配置文件 # 国际化配置文件(包名.基础名) spring.messages.basename=i18n.login server.tomcat.uri-encoding=UTF- sprin ...
- 运维常用mysql语句
1..select @@version; ##查询当前mysql的版本. 2. show variables like 'port';##查看mysql实例的端口. 3.show variables ...
- todo项目总结
vue+webpack项目工程配置 1.vue-loader+webpack项目配置 2.webpack配置项目加载各种静态资源 3.webpack-dev-server的配置和使用 安装: pack ...
- Unable to resolve target 'android-15'
SDK 15没有加载造成的,在SDK Manager.exe下安装以下文件 Android SDK Tools (25.2.5) Android SDK Platform-tools (28.0.1) ...
- linux固定IP
在新安装的Linux系统命令行下, 敲入:ifconfig,显示如下界面. 上面这张图显示网卡没有启动,那么我们敲入代码:ifup eth0启动网卡. 网卡启动后,我们可以看出,IP地址和网关等其他信 ...
- k8s(一) kubeadm简单集群初始化
写给想入门kubernetes的同学们 # 系统版本 [root@master ~]# cat /etc/os-release NAME="CentOS Linux" VERSIO ...
- CodeForces - 1051D Bicolorings(DP)
题目链接:http://codeforces.com/problemset/problem/1051/D 看了大佬的题解后觉着是简单的dp,咋自己做就做不来呢. 大佬的题解:https://www.c ...
- 只要访问url地址 那么容器就会根据地址进行对象的创建
只要访问url地址 那么容器就会根据地址进行对象的创建
- codeforces630C
Lucky Numbers CodeForces - 630C 小希称只含7和8的数是幸运数,那么不超过n位的幸运数有多少个? Input 一个整数 n (1 ≤ n ≤ 55) Output 输出幸 ...
- 了解AutoCAD对象层次结构 —— 1 ——应用程序
想象这样一个场景:当您开始一天的工作,坐到电脑前面,用鼠标双击桌面上的AutoCAD Civil 3D图标,这时一个AutoCAD Civil 3D应用程序将运行起来.打开Windows任务管理器,我 ...