(1)ndarray 与 scipy.sparse.csr.csr_matrix 的互转

import numpy as np
from scipy import sparse

1.1 ndarry 转 csr_matrix

A = np.array([[1,2,0],[0,0,3],[1,0,4]])

array([[1, 2, 0],

[0, 0, 3],
[1, 0, 4]])

sA = sparse.csr_matrix(A) # Here's the initialization of the sparse matrix.

<3x3 sparse matrix of type '<type 'numpy.int32'>'
with 5 stored elements in Compressed Sparse Row format>

print sA

(0, 0) 1
(0, 1) 2
(1, 2) 3
(2, 0) 1
(2, 2) 4

1.2  csr_matrix转 ndarry 

my_matrix = scipy.sparse.csr_matrix((2,2))

my_array = my_matrix.A

type(my_array) numpy.ndarray

(2)在用python进行科学运算时,常常需要把一个稀疏的np.array压缩

按行压缩:sparse.csr_matrix(csr:Compressed Sparse Row marix)

按列压缩:sparse.csc_matric(csc:Compressed Sparse Column marix)

2.1 按row行来压缩

>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
# 对于第i行,非0数据列是indices[indptr[i]:indptr[i+1]] 数据是data[indptr[i]:indptr[i+1]]
# 第0行,有非0的数据列是indices[indptr[0]:indptr[1]] = indices[0:2] = [0,2]
# 数据是data[indptr[0]:indptr[1]] = data[0:2] = [1,2],所以在第0行第0列是1,第2列是2
# 第1行,有非0的数据列是indices[indptr[1]:indptr[2]] = indices[2:3] = [2]
# 数据是data[indptr[1]:indptr[2] = data[2:3] = [3],所以在第1行第2列是3
# 第2行,有非0的数据列是indices[indptr[2]:indptr[3]] = indices[3:6] = [0,1,2]
# 数据是data[indptr[2]:indptr[3]] = data[3:6] = [4,5,6],所以在第2行第0列是4,第1列是5,第2列是6

2.2 按col列来压缩
>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csc_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 4],
[0, 0, 5],
[2, 3, 6]])
# 对于第i列,非0数据行是indices[indptr[i]:indptr[i+1]] 数据是data[indptr[i]:indptr[i+1]]
# 第0列,有非0的数据行是indices[indptr[0]:indptr[1]] = indices[0:2] = [0,2]
# 数据是data[indptr[0]:indptr[1]] = data[0:2] = [1,2],所以在第0列第0行是1,第2行是2
# 第1行,有非0的数据行是indices[indptr[1]:indptr[2]] = indices[2:3] = [2]
# 数据是data[indptr[1]:indptr[2] = data[2:3] = [3],所以在第1列第2行是3
# 第2行,有非0的数据行是indices[indptr[2]:indptr[3]] = indices[3:6] = [0,1,2]
# 数据是data[indptr[2]:indptr[3]] = data[3:6] = [4,5,6],所以在第2列第0行是4,第1行是5,第2行是6

 2.3 初始化

row = np.array([0, 0, 1, 2, 2, 2])
col = np.array([0, 2, 2, 0, 1, 2])
data = np.array([1, 2, 3, 4, 5, 6])
a = csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])

sparse_matrix的更多相关文章

  1. R语言︱XGBoost极端梯度上升以及forecastxgb(预测)+xgboost(回归)双案例解读

    XGBoost不仅仅可以用来做分类还可以做时间序列方面的预测,而且已经有人做的很好,可以见最后的案例. 应用一:XGBoost用来做预测 ------------------------------- ...

  2. Python机器学习入门

    # NumPy Python科学计算基础包 import numpy as np # 导入numpy库并起别名为npnumpy_array = np.array([[1,3,5],[2,4,6]])p ...

  3. sparse matrix

    w https://en.wikipedia.org/wiki/Sparse_matrix 稀疏矩阵存储格式总结+存储效率对比:COO,CSR,DIA,ELL,HYB - Bin的专栏 - 博客园ht ...

  4. Python 的稀疏矩阵

    什么是稀疏矩阵 简单的说,如果一个矩阵中大部分元素为0,就被称为稀疏矩阵. 对于稀疏矩阵而言,实际存储的数据项很少.如果在计算机中采用传统的二维数组(Python中用二维列表)来存储稀疏矩阵,就会浪费 ...

  5. 稀疏矩阵在Python中的表示方法

    对于一个矩阵而言,若数值为零的元素远远多于非零元素的个数,且非零元素分布没有规律时,这样的矩阵被称作稀疏矩阵:与之相反,若非零元素数目占据绝大多数时,这样的矩阵被称作稠密矩阵. 稀疏矩阵在工程应用中经 ...

  6. 图计算引擎分析——Gemini

    前言 Gemini 是目前 state-of-art 的分布式内存图计算引擎,由清华陈文光团队的朱晓伟博士于 2016 年发表的分布式静态数据分析引擎.Gemini 使用以计算为中心的共享内存图分布式 ...

随机推荐

  1. shell脚本实现telnet测试服务端口

    备注,使用方法:当前目录下要存在需要测试的地址端口的文件ip.txt,例子:cat ip.txt141.12.65.17 7500 #!/bin/bashcur_dir=$(pwd)ipfile=$c ...

  2. js实现选中div内容并复制到剪切板

    function copyUrl () { var div = document.getElementById('xxxx'); if (document.body.createTextRange) ...

  3. OpenCL 矩阵乘法

    ▶ 矩阵乘法,按照书里的内容进行了几方面的优化,包括局部内存,矢量数据类型,寄存器,流水线等. ● 最直接的乘法.调用时 main.c 中使用 size_t globalSize[] = { rowA ...

  4. AES/CBC/PKCS7Padding加密方式

    在网上找了大半天资料,终于找到一个可以用的 public static class AES { // 算法名称 final static String KEY_ALGORITHM = "AE ...

  5. pycharm中运行成功的python代码在jenkin中运行问题总结

    我们在用selenium+python完成了项目的UI自动化后,一般用jekins持续集成工具来定期运行,python程序在pycharm中编辑运行成功,但在jenkins中运行失败的两个问题,整理如 ...

  6. azkaban使用--邮件发送配置

    前置条件:你的服务器是可以连外网. 当任务是异步定时的,我们对于结果的感知往往没有手动跑脚本那么及时,但是如果任何一个任务运行失败可能都会引起一些列问题,在这个情况下消息通知就很重要了,azkaban ...

  7. (Angular Material)用Autocomplete打造带层级分类的DropDown

    效果如下图 代码实现 1.导入模块 import {MatAutocompleteModule} from '@angular/material/autocomplete'; @NgModule({  ...

  8. Oracle使用学习笔记(二)_Sql语句

    一.Sql语句的分类 数据操作语言,简称DML(data manipulation language),如增加,删除,修改,查询数据等 数据定义语言,简称DDL(data defination lan ...

  9. IDE 设备(磁盘/CD-ROM)配置不正确。“ide1:1”上具有一个 IDE 从设备,但没有主设备。此配置在虚拟机中无法正常运行。请使用配置编辑器将磁盘/CD-ROM 从“ide1:1”移到“ide1:0”。

    开启vmware报这个错: IDE 设备(磁盘/CD-ROM)配置不正确.“ide1:1”上具有一个 IDE 从设备,但没有主设备.此配置在虚拟机中无法正常运行.请使用配置编辑器将磁盘/CD-ROM ...

  10. jquery中的 deferred之 when (三)

    先来看使用案例: var def1 = $.Deferred(); var def2 = $.Deferred(); var def3 = $.Deferred(); var def4 = $.Def ...