flink读取source data

数据的来源是flink程序从中读取输入的地方。我们可以使用StreamExecutionEnvironment.addSource(sourceFunction)将源添加到程序中。

flink附带大量预先实现好的各种读取数据源的函数,也可以通过为非并行源去实现SourceFunction接口或者为并行源实现ParallelSourceFunction接口或扩展RichParallelSourceFunction来编写满足自己业务需要的定制源。

flink预先实现好数据源

下面有几个预定义的流源可以从StreamExecutionEnvironment访问

基于文件

readTextFile(path): 读取文本文件,该文件要符合TextInputFormat规范,逐行读取并作为字符串返回。

readFile(fileInputFormat,path): 根据指定的文件输入格式指定读取文件。

readFile(fileInputFormat,path,watchType,interval,pathFilter,typeInfo): 这是前两个方法在内部调用的方法。它根据给定的fileInputFormat读取路径中的文件。根据提供的watchType,该源可能会定期监视(每间隔ms)该路径下来到的新数据(FileProcessingMode.PROCESS_CONTINUOUSLY),或者处理当前路径中的数据后并退出(FileProcessingMode.PROCESS_ONCE)。使用pathFilter,用户可以进一步排除文件的处理。

基于套接字

socketTextStream : 从套接字读取。元素可以用分隔符分隔。

基于集合

fromCollection(Collection) : 从Java Java.util.Collection创建一个数据流。集合中的所有元素必须是相同的类型。

fromCollection(Iterator,Class) :从迭代器创建数据流。该类要指定迭代器返回的元素的数据类型。

fromElements(T ...) :根据给定的对象序列创建数据流。所有对象必须是相同的类型。

fromParallelCollection(SplittableIterator,Class) : 并行地从迭代器创建数据流。该类指定迭代器返回的元素的数据类型。

generateSequence(from,to) : 在给定的区间内并行生成数字序列 。

自定义数据原

package com.intsmaze.flink.streaming.source;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple5;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import java.util.Random; /**
* @Description: 自定义数据源的模板
* @Author: intsmaze
* @Date: 2019/1/4
*/
public class CustomSource { private static final int BOUND = 100; public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); DataStream<Tuple2<Integer, Integer>> inputStream= env.addSource(new RandomFibonacciSource()); inputStream.map(new InputMap()).print(); env.execute("Intsmaze Custom Source");
} /**
* @Description:
* @Author: intsmaze
* @Date: 2019/1/5
*/
private static class RandomFibonacciSource implements SourceFunction<Tuple2<Integer, Integer>> {
private static final long serialVersionUID = 1L; private Random rnd = new Random(); private volatile boolean isRunning = true;
private int counter = 0; /**
* @Description:
* @Param:
* @return:
* @Author: intsmaze
* @Date: 2019/1/5
*/
@Override
public void run(SourceContext<Tuple2<Integer, Integer>> ctx) throws Exception {
while (isRunning && counter < BOUND) {
int first = rnd.nextInt(BOUND / 2 - 1) + 1;
int second = rnd.nextInt(BOUND / 2 - 1) + 1;
ctx.collect(new Tuple2<>(first, second));
counter++;
Thread.sleep(50L);
}
} @Override
public void cancel() {
isRunning = false;
}
} /**
* @Description:
* @Param:
* @return:
* @Author: intsmaze
* @Date: 2019/1/5
*/
public static class InputMap implements MapFunction<Tuple2<Integer, Integer>, Tuple5<Integer, Integer, Integer,
Integer, Integer>> {
private static final long serialVersionUID = 1L; @Override
public Tuple5<Integer, Integer, Integer, Integer, Integer> map(Tuple2<Integer, Integer> value) throws
Exception {
return new Tuple5<>(value.f0, value.f1, value.f0, value.f1, 0);
}
} }

flink1.7自定义source实现的更多相关文章

  1. Flume自定义Source、Sink和Interceptor(简单功能实现)

    1.Event event是flume传输的最小对象,从source获取数据后会先封装成event,然后将event发送到channel,sink从channel拿event消费. event由头he ...

  2. Flink 自定义source和sink,获取kafka的key,输出指定key

    --------20190905更新------- 沙雕了,可以用  JSONKeyValueDeserializationSchema,接收ObjectNode的数据,如果有key,会放在Objec ...

  3. flume自定义Source(taildirSource),自定义Sink(数据库),开发完整步骤

    一.flume简单了解推荐网站(简介包括简单案例部署): http://www.aboutyun.com/thread-8917-1-1.html 二.我的需求是实现从ftp目录下采集数据,目录下文件 ...

  4. 【翻译】Flink Table Api & SQL — 自定义 Source & Sink

    本文翻译自官网: User-defined Sources & Sinks  https://ci.apache.org/projects/flink/flink-docs-release-1 ...

  5. 4、flink自定义source、sink

    一.Source 代码地址:https://gitee.com/nltxwz_xxd/abc_bigdata 1.1.flink内置数据源 1.基于文件 env.readTextFile(" ...

  6. flink02------1.自定义source 2. StreamingSink 3 Time 4窗口 5 watermark

    1.自定义sink 在flink中,sink负责最终数据的输出.使用DataStream实例中的addSink方法,传入自定义的sink类 定义一个printSink(),使得其打印显示的是真正的ta ...

  7. Hadoop实战-Flume之自定义Source(十八)

    import java.nio.charset.Charset; import java.util.HashMap; import java.util.Random; import org.apach ...

  8. 《从0到1学习Flink》—— 如何自定义 Data Source ?

    前言 在 <从0到1学习Flink>-- Data Source 介绍 文章中,我给大家介绍了 Flink Data Source 以及简短的介绍了一下自定义 Data Source,这篇 ...

  9. Flink 从 0 到 1 学习 —— 如何自定义 Data Source ?

    前言 在 <从0到1学习Flink>-- Data Source 介绍 文章中,我给大家介绍了 Flink Data Source 以及简短的介绍了一下自定义 Data Source,这篇 ...

随机推荐

  1. 通过UNIX域套接字传递描述符的应用

      传送文件描述符是高并发网络服务编程的一种常见实现方式.Nebula 高性能通用网络框架即采用了UNIX域套接字传递文件描述符设计和实现.本文详细说明一下传送文件描述符的应用. 1. TCP服务器程 ...

  2. GIT基本命令介绍

    1.git remote git remote -v| --verbose 查看仓库详细信息 git remote add <name> <url> 关联远程库.如果你本地新建 ...

  3. [20190214]11g Query Result Cache RC Latches.txt

    [20190214]11g Query Result Cache RC Latches.txt --//昨天我重复链接http://www.pythian.com/blog/oracle-11g-qu ...

  4. BurpSuit添加CA证书拦截HTTPS通信

    问题 BurpSuit 安装成功后可以直接使用代理对使用 HTTP 协议通信的会话进行拦截,但是对于使用 HTTPS 协议通信的会话进行代理使用时就会出现如下画面 例如访问百度主页: 原因 HTTPS ...

  5. spring MVC,controller中获得resuqest和response的方式

    package com.devjav.spring; import java.util.List; import java.util.Locale; import javax.servlet.http ...

  6. 老K漫谈区块链的共识(3)——分布式系统和区块链共识

    1. 啥是分布式系统 当我们评价一个新的事物或者介绍一个新的技术的时候,我们不能架空历史和环境,新的事物不可能脱离历史和环境凭空诞生.任何新的事物和新的技术总是或多或少的,与旧的事件以及过去的技术有所 ...

  7. python拟合数据,并通过拟合的曲线去预测新值的方法

    from scipy import interpolate import matplotlib.pyplot as plt import numpy as np def f(x): x_points ...

  8. 4.9Python数据处理篇之Matplotlib系列(九)---子图分布

    目录 目录 前言 (一)subplot()方法 ==1.语法说明== ==2.源代码== ==3.输出效果== (二)subplot2grid方法 ==1.语法说明== ==2.源代码== ==3.展 ...

  9. 记录参加QCon2017北京站的心得

    如有侵权,请告知作者删除.scottzg@126.com 很荣幸参加QCon全球软件开发大会,这里特别感谢我们部门的总经理,也是<互联网广告算法和系统实践>此书的作者王勇睿.因为他我才有这 ...

  10. webdriver设置浏览器全屏及设置浏览器窗口为特定大小的方法

    from selenium import webdriver driver = webdriver.Chrome() #全屏 driver.maximize_window() #具体大小 driver ...