利用tushare进行对兴业银行股价的爬取,并使用numpy进行分析
import sys
import tushare as ts
import numpy as np
data=ts.get_h_data('601066')
print(data)
#读出兴业银行7列数据
date open high close low volume amount
data.to_csv('E:/csv statistic/day/601066.csv') 把读取的股票数据存入某个内存空间中
#开始读某列数据
c,v=np.loadtxt('E:/csv statistic/day/601066.csv', skiprows=1,delimiter=',',usecols=(3,5),unpack=True)#收盘价,交易量
vwap=np.average(c,weights=v)#成交量加权平均值,
print('vwap=',vwap)
vwap= 9.63994147552952
print(np.mean(c))
9.0965625
#计算时间加权平均值
t=np.arange(len(c))
print(np.average(c,weights=t))
9.534940476190476
#寻找最大值和最小值
h,l=np.loadtxt('E:/csv statistic/day/601066.csv', skiprows=1,delimiter=',',usecols=(2,4),unpack=True)
print(np.max(h))
11.98
print(np.min(l))
6.5
#计算中程数和极差
print(np.max(h)+np.min(l)/2)#计算中程数
print(np.ptp(h))#计算最大值和最小值的差值
print(np.ptp(l))#计算交易量化的差值
15.254999999999999
4.19
4.92
#统计分析c=np.loadtxt('E:/csv statistic/day/601066.csv', skiprows=1,delimiter=',',usecols=(3,),unpack=Trueprint(np.median(c))#中间数
8.850000000000001
print('sorted:',np.msort(c))#从小到大排列
sorted: [ 7.77 7.83 7.87 7.92 7.95 8. 8.06 8.15 8.17 8.19 8.2 8.2 8.23 8.27 8.28 8.32 8.32 8.35 8.36 8.36 8.36 8.36
8.48 8.5 8.53 8.53 8.54 8.55 8.61 8.61 8.64 8.82 8.88 9.09 9.15 9.37 9.38 9.38 9.39 9.45 9.45 9.48 9.52 9.67 9.7 9.73 9.8 9.83
9.86 9.91 9.93 10.06 10.23 10.27 10.31 10.33 10.33 10.41 10.42 10.56 10.8 11.09 11.46 11.85]
print('方差:',np.var(c))
方差: 0.9610756835937502
print('手动计算方差:',np.mean((c-c.mean())**2))
手动计算方差: 0.9610756835937502
#股票收益率的计算
c=np.loadtxt('E:/csv statistic/day/601066.csv', skiprows=1,delimiter=',',usecols=(3,),unpack=True)
returns=np.diff(c)/c[:-1] #diff计算差分,总体是求股票收益率
print(np.std(returns)) # 求标准差
log_returns=np.diff(np.log(c)) #股票对数收益率
print(log_returns)
posretindices=np.where(returns>0)#股票收益率大于0的那几天
print(posretindices)
ann_vol=np.std(log_returns)/np.mean(log_returns)#日收益率
print(ann_vol)
ann_vol=ann_vol/np.sqrt(1./252.)#年收益率
print(ann_vol)
print(ann_vol*np.sqrt(1./12.))#月收益率
#定义一个 把日期转换为数字的函数
from datetime import datetime
def date2num(s):
return datetime.strptime(s,'%Y-%m-%d').date().weekday()
#读取收盘价
close=np.loadtxt('E:/csv statistic/day/601066.csv', skiprows=1,delimiter=',',usecols=(3,),unpack=True)
#读取日期
dates=np.loadtxt('E:/csv statistic/day/601066.csv', skiprows=1,delimiter=',',usecols=(0,),unpack=True,dtype=bytes).astype(str)
#读取的str数据转换为 数字
for i in range (dates.size):
dates[i]=date2num(dates[i])
dates=dates.astype(np.int8)
print(dates.dtype)
print(dates)
averages = np.zeros(5) # 定义一个空数组
# 依次获取不同天的索引,然后根据索引求得close(收盘价)数组中所有的对应值,计算平均值,把平均值加入到averages数组中
for i in range(5):
indices = np.where(dates == i)
prices = np.take(close, indices)
avg = np.mean(prices)
print("Day", i, "prices", prices, "Average", avg)
averages[i] = avg
top = np.max(averages) # 计算周每日的收盘价平均值的最大值
np.argmax(averages) # 获取周每日的收盘价平均值的最大值是哪一天
bottom = np.min(averages) # 计算周每日的收盘价平均值的最小值
np.argmin(averages) # 获取周每日的收盘价平均值的最小值是哪一天
利用tushare进行对兴业银行股价的爬取,并使用numpy进行分析的更多相关文章
- Python 爬取淘宝商品数据挖掘分析实战
Python 爬取淘宝商品数据挖掘分析实战 项目内容 本案例选择>> 商品类目:沙发: 数量:共100页 4400个商品: 筛选条件:天猫.销量从高到低.价格500元以上. 爬取淘宝商品 ...
- 利用Python3的requests和re库爬取猫眼电影笔记
以下笔记,作为参考借鉴,如有疑问可以联系我进行交流探讨! 代码思路很简单,简单概括为: 首先利用requests的get方法获取页面的html文件,之后对得到的html文件进行相对应的正则处理,然 ...
- 利用python的requests和BeautifulSoup库爬取小说网站内容
1. 什么是Requests? Requests是用Python语言编写的,基于urllib3来改写的,采用Apache2 Licensed 来源协议的HTTP库. 它比urllib更加方便,可以节约 ...
- 毕设之Python爬取天气数据及可视化分析
写在前面的一些P话:(https://jq.qq.com/?_wv=1027&k=RFkfeU8j) 天气预报我们每天都会关注,我们可以根据未来的天气增减衣物.安排出行,每天的气温.风速风向. ...
- Python爬虫使用lxml模块爬取豆瓣读书排行榜并分析
上次使用了BeautifulSoup库爬取电影排行榜,爬取相对来说有点麻烦,爬取的速度也较慢.本次使用的lxml库,我个人是最喜欢的,爬取的语法很简单,爬取速度也快. 本次爬取的豆瓣书籍排行榜的首页地 ...
- 常用正则表达式爬取网页信息及HTML分析总结
Python爬取网页信息时,经常使用的正则表达式及方法. 1.获取<tr></tr>标签之间内容 2.获取<a href..></a>超链接之间内容 3 ...
- python实例:自动爬取豆瓣读书短评,分析短评内容
思路: 1.打开书本“更多”短评,复制链接 2.脚本分析链接,通过获取短评数,计算出页码数 3.通过页码数,循环爬取当页短评 4.短评写入到txt文本 5.读取txt文本,处理文本,输出出现频率最高的 ...
- python爬取B站视频弹幕分析并制作词云
1.分析网页 视频地址: www.bilibili.com/video/BV19E… 本身博主同时也是一名up主,虽然已经断更好久了,但是不妨碍我爬取弹幕信息来分析呀. 这次我选取的是自己 唯一的爆款 ...
- 团队-爬取豆瓣电影TOP250-需求分析
需求: 1.搜集相关电影网址 2.实现相关逻辑的代码 项目步骤: 1.通过豆瓣网搜索关键字,获取相关地址 2.根据第三方包实现相关逻辑
随机推荐
- c/c++ 标准容器 vector的内存空间是如何自动增长的
c/c++ 标准容器 vector的内存空间是如何自动增长的 vector,string,deque的内存存储机制:在一个连续的内存空间存储,所以才支持下标操作. vector的课题:由于容器的大小是 ...
- 对Can We MakeOperating SystemsReliable and Secure 的翻译
摘要:微内核-相对于大内核(monolithic kernels)来说,由于它的 lower performance,长期以来被认为是不可接受的.而现在,由于它潜 在的高可靠性(higher reli ...
- K-means算法的matlab程序(初步)
K-means算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648369.html 文章中已经介绍了K-means算法,现在用matlab程序实现 ...
- Servlet中的request与response
了解这方面的知识可以查看以下博客 https://www.cnblogs.com/zhangyinhua/p/7629221.html https://www.cnblogs.com/zhaojian ...
- python 管道、数据共享、进程池
一.管道(Pipe)(了解) (详情参考:https://www.cnblogs.com/clschao/articles/9629392.html) 进程间通信(IPC)方式二:管道(不推荐使用,了 ...
- P1279 字串距离 dp 洛谷
题目描述 设有字符串X,我们称在X的头尾及中间插入任意多个空格后构成的新字符串为X的扩展串,如字符串X为”abcbcd”,则字符串“abcb□cd”,“□a□bcbcd□”和“abcb□cd□”都是X ...
- C#基础の迭代器详解
一.什么是迭代器 迭代器(iterator)有时又称游标(cursor)是程序设计的软件设计模式,可在容器(container,例如链表或阵列)上遍访的接口,设计人员无需关心容器的内容. 迭代器模式是 ...
- WPF中应用字体图标
一.什么是字体图标 我们在进行GDI(图形界面)编程的过程中图标是不可少的.近些年随着网络的繁荣和移动应用的繁荣,矢量图的应用越来越火. 矢量图是一种用数学方法描述的.由一系列点和线组成的图,因此相比 ...
- CSAPP:第六章 存储器层次结构
存储器层次结构 关键点:内存 6.1 随机访问存储器6.2 局部性6.3 存储器层次结构 6.1 随机访问存储器 随机访问存储器(Random-Access Memory,RAM)分为两类:静态的 ...
- 【ES6】函数
函数默认值问题 在ES6之前,不能直接为函数指定默认值,但是ES6允许为函数的参数设置默认值 之前实现方式 function log(x, y) { y = y || 'World'; console ...