AtCoder Grand Contest 006 (AGC006) C - Rabbit Exercise 概率期望
原文链接https://www.cnblogs.com/zhouzhendong/p/AGC006C.html
题目传送门 - AGC006C
题意
有 $n$ 个兔子,从 $1$ 到 $n$ 编号,第 $i$ 个兔子的初始位置为 $x_i$ ,有 $K$ 次操作,每次操作分 $m$ 步,其中第 $j$ 步用一个数 $a_j$ 描述,这一步的效果是:等概率在 $a_j-1$ 和 $a_j +1$ 中选择一个(假设选择的那个是 $x$),并让兔子 $a_j$ 跳到以兔子 $x$ 为对称中心时,兔子 $a_j$ 的对称位置。求最终所有兔子的位置的期望。
$n,m\leq 10^5, K\leq 10^{18}, |x_i|\leq 10^9$
题解
废话1:我好久没写有质量的博客了,现在写一篇。
废话2:置换方向写反,写成了逆置换,被续走 15 分钟。
又是一道 AC 之后再证明的题。
假设兔子 $i$ 跳一步,则:(假设 $E(i)$ 表示兔子 $i$ 的位置这时的期望)
$$E(i) = \frac 12 (2x_{i-1}-x_i) + \frac 12 (2x_{i+1}-x_i) = x_{i-1}+x_{i+1}-x_{i}$$
于是,可以归纳证明,在跳了若干次之后,满足:
$$E^\prime(i) = \frac 12 (2E(i-1)-E(i)) + \frac 12 (2E(i+1)-E(i)) = E(i-1)+E(i+1)-E(i)$$
于是每次跳,相当于使
$$x_i^\prime = x_{i-1}+x_{i+1}-x_i$$
记 $d_i = x_{i+1}-x{i}$ ,可以发现,上述操作的实质就是
$${\rm swap}(d_{i-1},d_i)$$
于是,我们只需要处理出一组操作的效果,得到一个 $n-1$ 个数的置换,然后做 $K$ 次置换即可。
这个只需要把置换分解成多个轮换就好了。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=100005;
int n,m,x[N],a[N];
int b[N],vis[N],tmp[N],t;
int ans[N];
LL K;
int main(){
scanf("%d",&n);
for (int i=1;i<=n;i++)
scanf("%d",&x[i]);
scanf("%d%lld",&m,&K);
for (int i=1;i<n;i++)
b[i]=i;
for (int i=1;i<=m;i++){
scanf("%d",&a[i]);
swap(b[a[i]-1],b[a[i]]);
}
memset(vis,0,sizeof vis);
for (int i=1;i<n;i++){
if (vis[i])
continue;
vis[i]=1;
tmp[t=1]=i;
for (int j=b[i];j!=i;j=b[j])
vis[tmp[++t]=j]=1;
int d=K%t;
for (int j=1;j<=t;j++)
ans[tmp[j]]=tmp[(j-1+d)%t+1];
}
LL tot=x[1];
printf("%lld\n",tot);
for (int i=1;i<n;i++)
printf("%lld\n",tot+=x[ans[i]+1]-x[ans[i]]);
return 0;
}
AtCoder Grand Contest 006 (AGC006) C - Rabbit Exercise 概率期望的更多相关文章
- AtCoder Grand Contest 006 C:Rabbit Exercise
题目传送门:https://agc006.contest.atcoder.jp/tasks/agc006_c 题目翻译 数轴上有\(N\)只兔子,从\(1\)到\(N\)编号,每只兔子初始位置是\(x ...
- AtCoder Grand Contest 006
AtCoder Grand Contest 006 吐槽 这套题要改个名字,叫神仙结论题大赛 A - Prefix and Suffix 翻译 给定两个串,求满足前缀是\(S\),后缀是\(T\),并 ...
- Atcoder Grand Contest 006 D - Median Pyramid Hard(二分+思维)
Atcoder 题面传送门 & 洛谷题面传送门 u1s1 Atcoder 不少思维题是真的想不出来,尽管在 Atcoder 上难度并不高 二分答案(这我倒是想到了),检验最上面一层的数是否 \ ...
- AtCoder Grand Contest 006 F - Blackout
Description 在 \(n*n\) 的棋盘上给出 \(m\) 个黑点,若 \((x,y)\),\((y,z)\) 都是黑点,那么 \((z,x)\) 也会变成黑点,求最后黑点的数量 题面 So ...
- [Atcoder Grand Contest 006 F][AGC006F] Blackout [染色]
题面 传送门 思路 首先,这个涂黑的方法我们来优化一下模型(毕竟当前这个放到矩形里面,你并看不出来什么规律qwq) 我们令每个行/列编号为一个点,令边(x,y)表示一条从x到y的有向边 那么显然只要有 ...
- AtCoder Grand Contest 006 题解
传送门 \(A\) 咕咕 const int N=105; char s[N],t[N];int n; inline bool eq(R int k){fp(i,1,k)if(s[n-k+i]!=t[ ...
- AtCoder Grand Contest 012
AtCoder Grand Contest 012 A - AtCoder Group Contest 翻译 有\(3n\)个人,每一个人有一个强大值(看我的假翻译),每三个人可以分成一组,一组的强大 ...
- AtCoder Grand Contest 011
AtCoder Grand Contest 011 upd:这篇咕了好久,前面几题是三周以前写的... AtCoder Grand Contest 011 A - Airport Bus 翻译 有\( ...
- AtCoder Grand Contest 031 简要题解
AtCoder Grand Contest 031 Atcoder A - Colorful Subsequence description 求\(s\)中本质不同子序列的个数模\(10^9+7\). ...
随机推荐
- Freeswitch 入门
让我们从最初的运行开始,一步一步进入 FreeSWITCH 的神秘世界. 命令行参数 一般来说,FreeSWITCH 不需要任何命令行参数就可以启动,但在某些情况下,你需要以一些特殊的参数启动.在此, ...
- LINUX-redis & mongodb
ubuntu安装redis: apt-get -y install redis-serverubuntu启动redis: /etc/init.d/redis-server restart linux安 ...
- c# 操作Word总结(车)
在医疗管理系统中为保存患者的体检和治疗记录,方便以后的医生或其他人查看.当把数据保存到数据库中,需要新建很多的字段,而且操作很繁琐,于是想到网页的信息创建到一个word文本中,在显示的时,可以在线打开 ...
- Android 目前最稳定和高效的UI适配方案
Android系统发布十多年以来,关于Android的UI的适配一直是开发环节中最重要的问题,但是我看到还是有很多小伙伴对Android适配方案不了解.刚好,近期准备对糗事百科Android客户端设计 ...
- spring各版本jar包和源码
spring各版本jar包和源码 spring历史版本源码:https://github.com/spring-projects/spring-framework/tags spring历史jar包和 ...
- 创建表空间、新增用户、给用户赋予DBA权限 、删除用户下的上有数据表
正文原创 一:查询数据库实例有多少用户: [oracle@localhost ~]$ sqlplus / as sysdba; SQL*Plus: Release 11.2.0.3.0 Product ...
- Linux端BaiduPCS-Go使用方法
下载https://pan.baidu.com/s/1RFHTRE1c_JlP8rrZiERsTg 运行 ./BaiduPCS-Go 可能更新:update 登录:login 下载: d xxx 更多 ...
- 第十四单元 Linux网络原理及基础设置
·ifconfig命令来维护网络(详见linux系统管理P422) 1) 掌握ifconfig命令的功能:显示所有正在启动的网卡的详细信息或设定系统中网卡的IP地址.2) 灵活应用ifconfig命令 ...
- 《剑指offer》 数值的整数次方
本题来自<剑指offer> 数值的整数次方 题目: 给定一个double类型的浮点数base和int类型的整数exponent.求base的exponent次方. 思路: 代码从三个方面处 ...
- PDF编辑方法,PDF如何去除数字签名
有些人会在PDF文件中添加数字签名,但当PDF文件有数字签名的时候就无法对PDF文件进行编辑.添加等操作.这个时候就需要去除PDF文件中的数字签名了,要怎么做呢,就由我来跟大家分享一下小编我的去除数字 ...