Codeforces 982E Billiard 扩展欧几里德
原文链接http://www.cnblogs.com/zhouzhendong/p/9055728.html
题目传送门 - Codeforces 928E
题意
一束与坐标轴平行或者成$45^\circ$角的光线在一个矩形区域内反射。
如图:

给定矩形的长宽,以及光源位置、光线初始方向,问它最先到达四个角落中的哪一个角落。如果永远不能到达,输出$-1$。
题解
本来不想写的。本次CF又打烂了。
D题一个傻逼错误调了40多分钟。
E题貌似挺可做的。可是来不及啊。(再加上深更半夜神志不清)
我们来回顾一下初中数学套路。
考虑将每次反射做一个对称。
我来画一下一组数据:
5 3 4 0 1 1

通过对称,我们把它画成这样(经典初中数学套路):

然后问题就大致变成了求直线到达的第一个满足$n|T_x,m|T_y$的点$(T_x,T_y)$。
为了方便,我们再把原图画成这样:

问题进一步简化,变成从$s'$出发的问题了。
设$S=(x,y)$,则$S'=(0,y-x)$,
不难列出方程:
$an+(y-x)=bm \Longrightarrow an+bm=(x-y)$
然后我们用exgcd来解一下这个方程,首先判掉无解的情况,输出$-1$。
然后注意一下我们要求的是第一个碰到的这样的点,所以在特殊情况的时候要小心。
要取$a$的尽量小的正整数值。我一开始写错了,对$m$取模,然后突然发现应该对$m/gcd(n,m)$取模……
然后根据算出来的$a$以及$b$的奇偶性来确定到达的位置。
至于一开始输入的:
如果是平行坐标轴的,那么直接判掉。
如果是$45^\circ$的,那么我们可以通过在原矩形中取对称来使其变成我们需要的那样。
题外话:
又错失一次上黄的机会QAQ。
话说我的代码跑的挺快的。
话说为什么目前我$friends$里面的三位大佬(xza,bestfy,emoairx)的代码怎么都要跑几百$MS$……后来才发现他们的那个循环好像不是$O(1)$的……
QAQ大佬都会写循环……只有我这种菜鸡才去写公式。关键是还写挂了调了有一会儿……(就是之前提到过的那个问题)
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
int n,m,x,y,vx,vy;
int refx,refy;
LL exgcd(LL a,LL b,LL &x,LL &y){
if (!b){
x=1,y=0;
return a;
}
LL res=exgcd(b,a%b,y,x);
y-=(a/b)*x;
return res;
}
int main(){
scanf("%d%d%d%d%d%d",&n,&m,&x,&y,&vx,&vy);
if (vx==0){
if (x==0||x==n){
if (vy==1)
printf("%d %d\n",x,m);
else
printf("%d %d\n",x,0);
}
else
puts("-1");
return 0;
}
if (vy==0){
if (y==0||y==m){
if (vx==1)
printf("%d %d\n",n,y);
else
printf("%d %d\n",0,y);
}
else
puts("-1");
return 0;
}
if (vx==-1)
refx=1,x=n-x;
if (vy==-1)
refy=1,y=m-y;
//s'=(0,y-x)
//an+(y-x)=bm => an+bm=(x-y)
LL a,b,g;
g=exgcd(n,m,a,b);
if ((x-y)%g!=0){
puts("-1");
return 0;
}
LL t=(x-y)/g;
a*=t,b*=t;
int _m=m/g,_n=n/g;
LL _a=(a%_m+_m+_m-1)%_m+1,_b=-((x-y)-_a*n)/m;
LL ansx=n,ansy=m;
if (_a%2==0)
ansx=n-ansx;
if (_b%2==0)
ansy=m-ansy;
if (refx)
ansx=n-ansx;
if (refy)
ansy=m-ansy;
printf("%I64d %I64d",ansx,ansy);
return 0;
}
Codeforces 982E Billiard 扩展欧几里德的更多相关文章
- Codeforces 982E Billiard exgcd
Billiard 枚举终点, 对于每一个终点一共有四种周期的相遇方式, 枚举一下取最小的时间. #include<bits/stdc++.h> #define LL long long # ...
- 欧几里德和扩展欧几里德详解 以及例题CodeForces 7C
欧几里德定理: 对于整数a,b来说,gcd(a, b)==gcd(b, a%b)==d(a与b的最大公约数),又称为辗转相除法 证明: 因为a是d的倍数,b是d的倍数:所以a%d==0:b%d==0: ...
- CodeForces 146E - Lucky Subsequence DP+扩展欧几里德求逆元
题意: 一个数只含有4,7就是lucky数...现在有一串长度为n的数...问这列数有多少个长度为k子串..这些子串不含两个相同的lucky数... 子串的定义..是从这列数中选出的数..只要序号不同 ...
- (扩展欧几里德算法)zzuoj 10402: C.机器人
10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...
- [BZOJ1407][NOI2002]Savage(扩展欧几里德)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407 分析: m,n范围都不大,所以可以考虑枚举 先枚举m,然后判定某个m行不行 某个 ...
- 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...
- 51nod 1352 扩展欧几里德
给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数. 提示: 对于第二组测试数据,集合分别 ...
- CF 7C. Line(扩展欧几里德)
题目链接 AC了.经典问题,a*x+b*y+c = 0整数点,有些忘记了扩展欧几里德,复习一下. #include <cstdio> #include <iostream> # ...
- poj2142-The Balance(扩展欧几里德算法)
一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...
随机推荐
- Python-爬虫-猫眼T100
目标站点需求分析 涉及的库 from multiprocessing import Poolfrom requests.exceptions import RequestExceptionimport ...
- html5中如何去掉input type date默认
html5中如何去掉input type date默认样式 2.对日期时间控件的样式进行修改目前WebKit下有如下9个伪元素可以改变日期控件的UI:::-webkit-datetime-edit – ...
- 哎呀,搬运blog好累啊,96篇呢QwQ
累死了,哼 哎呀,算了,不搬了不搬了
- hash·余数hash和一致性hash
网站的伸缩性架构中,分布式的设计是现在的基本应用. 在memcached的分布式架构中,key-value缓存的命中通常采用分布式的算法 一.余数Hash 简单的路由算法可以使用余数Hash: ...
- Modbus库开发笔记之二:Modbus消息帧的生成
前面我们已经对Modbus的基本事务作了说明,也据此设计了我们将要实现的主从站的操作流程.这其中与Modbus直接相关的就是Modbus消息帧的生成.Modbus消息帧也是实现Modbus通讯协议的根 ...
- Confluence 6 数据库整合的限制
数据库整合的限制 注意: Confluence 自带的 XML 方式导出方法并不适用于备份和整合大数据集.这里有一些第三方的数据库工具你可以使用能够帮助你对大数据集进行备份和整合.如果你在选择正确工具 ...
- ES6之Set与Map加深理解
Set 类似于数组,但是成员的值都是唯一的,没有重复的值,有序. Set函数可以接受一个数组(或者具有 iterable 接口的其他数据结构)作为参数,用来初始化. 用途 数组去重: [...new ...
- Android 框架 Afinal使用
介绍android Afinal框架功能: Afinal是一个开源的android的orm和ioc应用开发框架.在android应用开发中,通过Afinal的ioc框架,诸如UI绑定,事件绑定,通过注 ...
- 使用pm2离线部署nodejs项目
1.下载https://npm.taobao.org/mirrors/node/v8.11.1/node-v8.11.1-linux-x64.tar.xz 比如安装到/opt目录 xz -d node ...
- spring boot 解决跨域访问
package com.newings.disaster.shelters.configuration; import org.springframework.context.annotation.B ...