本文主要专注讨论LTI系统对WSS Process的影响。WSS Process的主要特性有mean以及correlation,其中correlation特性在滤波器设计,信号检测,信号预测以及系统识别中扮演者非常重要的作用。

LTI系统的数学式由卷积定义,假设LTI系统的脉冲响应为$h(t)$,输入的WSS Process为$x(t)$,输出的Process为$y(t)$,那么有如下公式:

$\displaystyle{y(t) = \int_{-\infty}^{+\infty}h(v)x(t-v)dv=\int_{-\infty}^{+\infty}x(v)h(t-v)dv}$

对于一个稳定的LTI系统来说,只要输入是有界的,那么输出也是有界的(BIBO)。不过我们这里的输入的是WSS Process,不同于固定的输入信号,比起要求每一个采样点上的输入都有界,要求$E[x^2(t)]=R_{xx}(0)$是有界的就足够了。(白噪声是特殊情况)

Mean/Expectation

WSS Processes在通过LTI系统之后,该process的mean为

$\begin{align*}
\mu_y = E[y(t)] &= E\left\{ \int_{-\infty}^{+\infty}h(v)x(t-v)dv \right\}\\
&=\int_{-\infty}^{+\infty}h(v)E[x(t-v)]dv\\
&=\int_{-\infty}^{+\infty}h(v)\mu_x dv\\
&=\mu_x \int_{-\infty}^{+\infty}h(v)dv\\
&=H(j0)\mu_x
\end{align*}$

这意味着输出的mean也是一个常数$\mu_y$,输入输出的mean相差的倍数为$\frac{\mu_y}{\mu_x} = H(j0)$,这个数值是该连续时间LTI系统的频率响应$H(j\Omega)$在零点处的取值,我们也可以把它称为该LTI系统的DC增益(DC gain)。

Cross-correlation

WSS Process在LTI系统的输入输出有cross-correlation如下

$\begin{align*}
E\{y(t+\tau)x(t)\} &= E\left\{ \left[\int_{-\infty}^{+\infty}h(v)x(t+\tau-v)dv \right ]x(t)\right \}\\
&=\int_{-\infty}^{+\infty}h(v)E\Big\{x(t+\tau-v)x(t)\Big\}dv\\
&=\int_{-\infty}^{+\infty}h(v)R_{xx}(\tau-v)dv \qquad x(t)\ is\ WSS\ Process\\
&=h(\tau)*R_{xx}(\tau) \qquad this\ crosscorrelation\ is\ only\ relevant\ to\ \tau\\
&=R_{yx}(\tau)
\end{align*}$

从上面的式子也能得到如下关系:

输入输出的process之间的cross-correlation只与两者的时间延迟$\tau$有关。

另外,根据WSS的相关性质,还可以得到

$R_{xy}(\tau)=R_{yx}(-\tau)=R_{xx}(-\tau)*h(-\tau)=R_{xx}(\tau)*h(-\tau)$

Auto-correlation

WSS Process在LTI系统的输出有auto-correlation如下

$\begin{align*}
E\{y(t+\tau)y(t)\} &= E\left\{ \left[\int_{-\infty}^{+\infty}h(v)x(t+\tau-v)dv \right ]y(t)\right \}\\
&=\int_{-\infty}^{+\infty}h(v)E\Big\{x(t+\tau-v)y(t)\Big\}dv\\
&=\int_{-\infty}^{+\infty}h(v)R_{xy}(\tau-v)dv \\
&=h(\tau)*R_{xy}(\tau) \qquad this\ autocorrelation\ is\ only\ relevant\ to\ \tau\\
&=R_{yy}(\tau)
\end{align*}$

从上面的式子也能得到如下关系:

WSS Process在经过LTI系统后所得到的输出的auto-correlation仅与时间差$\tau$有关,并且前面也提到该输出process的mean是固定常数,因此输出仍然是WSS Process。

Jointly WSS

由于LTI系统的输入$x(t)$与输出$y(t)$都是WSS·Process,并且这两者的cross-correlation只与时间差$\tau$有关,因此$x(t)$与$y(t)$是Jointly WSS的。

Summary

Continuous-Time

前面我们已经得出WSS process在经过LTI系统时的mean特性:

$\mu_y=H(j0)\mu_x$

correlation特性:

$\begin{align*}
R_{yx}(\tau)&=h(\tau)\ * \ R_{xx}(\tau)\\
R_{xy}(\tau)&=h(-\tau) * \ R_{xx}(\tau)\\
R_{yy}(\tau)&=h(\tau)\ * \ R_{xy}(\tau)
\end{align*}$

另外,covariance与correlation之间有关系$C_{x,y}(t+\tau,t) = R_{x,y}(t+\tau,t) + \mu_x(t+\tau)\mu_y(t)$,并且此处$x(t),y(t)$均为WSS Process,因此有如下covariance特性:

$\begin{align*}
C_{yx}(\tau)&=h(\tau)\ * \ C_{xx}(\tau)\\
C_{xy}(\tau)&=h(-\tau) * \ C_{xx}(\tau)\\
C_{yy}(\tau)&=h(\tau)\ * \ C_{xy}(\tau)
\end{align*}$

通过上面的特性也能得到:

$\begin{align*}
R_{yy}(\tau)&=R_{xx}(\tau)*\underbrace{h(\tau) * h(-\tau)}_{h(\tau) * h(-\tau)\triangleq\overline{R}_{hh}(\tau)}&=R_{xx}(\tau)*\overline{R}_{hh}(\tau) \\
C_{yy}(\tau)&=C_{xx}(\tau)*\underbrace{h(\tau) * h(-\tau)}_{h(\tau) * h(-\tau)\triangleq\overline{R}_{hh}(\tau)}&=C_{xx}(\tau)*\overline{R}_{hh}(\tau)
\end{align*}$

在式子当中,我们定义了$\overline{R}_{hh}(\tau)$表示为LTI系统脉冲响应$h(\tau)$与其对称函数进行卷积,有

$\displaystyle{\overline{R}_{hh}(\tau)=h(\tau)*h(-\tau) = \int_{-\infty}^{+\infty}h(t+\tau)h(t)dt}$

我们把$\overline{R}_{hh}(\tau)$称为deterministic autocorrelation function of $h(t)$。

而在频域,令$S_{xx}(j\Omega) = \mathcal{F}\Big(R_{xx}(\tau)\Big)$,有

$\begin{align*}
S_{yx}(j\Omega)&=H(j\Omega) \ S_{xx}(j\Omega)\\
S_{xy}(j\Omega)&=H^*(j\Omega)  S_{xx}(j\Omega)\\
S_{yy}(j\Omega)&=H(j\Omega) \ S_{xy}(j\Omega)
\end{align*}$

※$h(t)$是实函数,那么$h(-t)$的傅里叶变换就是$H(j\Omega)$的复共轭,即$H^*(j\Omega)$,并且有$H(j\Omega)H^*(j\Omega) = |H(j\Omega)|^2$。

同时也能推导出

$S_{yy}(j\Omega) = S_{xx}(j\Omega) H(j\Omega) H^*(j\Omega) = S_{xx}(j\Omega)|H(j\Omega)|^2$

Discrete-Time

同理,我们在离散时间的信号与系统中,可以得到

Mean:

$\displaystyle{\mu_y = \mu_x\sum_{-\infty}^{\infty}h[n]}$

Correlation:

$\begin{align*}R_{yx}[m] &= h[m]*R_{xx}[m]\\
R_{xy}[m] &= h[-m]*R_{xx}[m]\\
R_{yy}[m] &= h[m]*R_{xy}[m]\\
R_{yy}[m] &= h[m]*h[-m]*R_{xx}[m] = \overline{R}_{hh}[m]*R_{xx}[m]
\end{align*}$

其中$\overline{R}_{hh}[m]$为$h[m]$的deterministic autocorrelation function,定义如下

$\displaystyle{ \overline{R}_{hh}[m] = h[m]*h[-m]=\sum_{-\infty}^{\infty}h[n+m]h[n] }$

上述关系式的傅里叶变换以及z变换有如下关系

$\begin{align*}
\mu_y &= H(e^{j0})\mu_x ,& S_{yx}(e^{j\Omega})&=S_{xx}(e^{j\Omega})H(e^{j\Omega}), &S_{yy}(e^{j\Omega})&=S_{xx}(e^{j\Omega})|H(e^{j\Omega})|^2\\
\mu_y &= H(1)\mu_x ,& S_{yx}(z)&=S_{xx}(z)H(z) ,& S_{yy}(z)&=S_{xx}(z)H(z)H(1/z)
\end{align*}$

※$h[m]$是实数序列,因此才可以得到$H(e^{j\Omega})H(e^{-j\Omega}) = |H(e^{j\Omega})|^2$。

以上correlation式子也能写成covariance式子(略)。

Reference

Alan V. Oppenheim: Signals, Systems and Inference, Chapter 9:Random Process

LTI系统对WSS Processes的作用的更多相关文章

  1. 形象地展示信号与系统中的一些细节和原理——卷积、复数、傅里叶变换、拉普拉斯变换、零极图唯一确定因果LTI系统

    看懂本文需要读者具备一定的微积分基础.至少开始学信号与系统了本文主要讲解欧拉公式.傅里叶变换的频率轴的负半轴的意义.傅里叶变换的缺陷.为什么因果LTI系统可以被零极图几乎唯一确定等等容易被初学者忽略但 ...

  2. MES系统在小批量电子行业生产管理中的应用

    小批量电子产品生产管理的主要问题 电子电器制造类企业,既有单件小批量生产,也有批量生产:有按库存生产,也有按订单生产,属于典型的离散制造行业.因产品的不同其生产工艺流程也不尽相同,生产设备的布置不是按 ...

  3. 【学习笔记】大数据技术原理与应用(MOOC视频、厦门大学林子雨)

    1 大数据概述 大数据特性:4v volume velocity variety value 即大量化.快速化.多样化.价值密度低 数据量大:大数据摩尔定律 快速化:从数据的生成到消耗,时间窗口小,可 ...

  4. DNS解析服务使用的系统对网站的安全起着很重要的作用

    1 采用独享的DNS服务器解析系统 DNS解析服务使用的系统对网站的安全极其重要.现在国内的DNS服务器普遍是公用的,即是你的企业网站DNS解析服务和其他许多网站都是由同一个DNS服务器提供.一旦某个 ...

  5. WSS Process On Causal LTI System

    Consider a real LTI system with a WSS process $x(t)$ as input and WSS process $y(t)$ as output. Base ...

  6. CRM系统对企业管理的作用有多大?

    随着市场经济的发展,对任何行业的企业来说,客户都是非常重要的一个部分.CRM系统帮助企业做到以客户为中心,它可以根据客户的具体要求进行跟进和反馈,在很大程度上提高公司的客户服务水平和客户满意度,进而提 ...

  7. linux中ulimit作用

    一.作用 Linux对于每个用户,系统限制其最大进程数.为提高性能,可以根据设备资源情况,设置各linux 用户的最大进程数. ulimit主要是用来限制进程对资源的使用情况的,它支持各种类型的限制, ...

  8. 再谈SQL Server中日志的的作用

    简介     之前我已经写了一个关于SQL Server日志的简单系列文章.本篇文章会进一步挖掘日志背后的一些概念,原理以及作用.如果您没有看过我之前的文章,请参阅:     浅谈SQL Server ...

  9. Linux /dev目录详解和Linux系统各个目录的作用

    Linux /dev目录详解(转http://blog.csdn.net/maopig/article/details/7195048) 在linux下,/dev目录是很重要的,各种设备都在下面.下面 ...

随机推荐

  1. UI 前端参考

    :http://amazeui.org/ :http://www.dcloud.io/index.html :https://weui.io/ :http://m.sui.taobao.org/get ...

  2. 【原创】分布式之elk日志架构的演进

    引言 好久没写分布式系列的文章了,最近刚好有个朋友给我留言,想看这方面的知识.其实这方面的知识,网上各种技术峰会的资料一抓一大把.博主也是凑合着写写.感觉自己也写不出什么新意,大家也凑合看看. 日志系 ...

  3. 01 前言/基础设施 - DevOps之路

    01 前言/基础设施 - DevOps之路 文章Github地址,欢迎start:https://github.com/li-keli/DevOps-WiKi 简介 基础架构采用DevOps设计思想, ...

  4. Node+GitLab实现小程序CI系统

    为什么要实现自动部署 小程序开发迭代里,有以下几个个头痛的问题, 如何准确并快速的的把小程序上传去后台,并让测试人员进行测试? 测试同事找开发要二维码,效率较低 本地生成的二维码会出现携带本地代码.未 ...

  5. Python全栈开发之路 【第五篇】:Python基础之函数进阶(装饰器、生成器&迭代器)

    本节内容 一.名称空间 又名name space,就是存放名字的地方.举例说明,若变量x=1,1存放于内存中,那名字x存放在哪里呢?名称空间正是存放名字x与1绑定关系的地方. 名称空间共3种,分别如下 ...

  6. ACM/ICPC 2018亚洲区预选赛北京赛站网络赛D-80 Days--------树状数组

    题意就是说1-N个城市为一个环,最开始你手里有C块钱,问从1->N这些城市中,选择任意一个,然后按照顺序绕环一圈,进入每个城市会有a[i]元钱,出来每个城市会有b[i]个城市,问是否能保证经过每 ...

  7. 009-定时关闭弹出广告窗口 By BoAi 20190414

    ;~ 定时关闭弹出广告窗口 By BoAi 20190414 ; ### 参数设置段 ######################################SingleInstance,forc ...

  8. vue 渲染函数&jsx

    前端更新状态,更新视图,所以性能问题主要由Dom操作引起的,而js解析编译dom渲染就要快得多,  所把要js和html混写. vue 的动态js操作 html  方法:reader函数: vue  ...

  9. Day3 Python基础之while、for循环(二)

    1.数据运算 算数运算 整除运算:// 取余运算:% 指数运算:** 赋值运算 b+=a;等价于b=b+a 比较运算 >,<,==,!=,>=,<= 逻辑运算符 and .or ...

  10. shell正则表达

    shell正则表达 .*和.?的比较: 比如说匹配输入串A: 101000000000100 使用 1.*1 将会匹配到1010000000001,匹配方法:先匹配至输入串A的最后, 然后向前匹配,直 ...