Neural Network

Motivations

想要拟合一条曲线,在feature 很多的情况下,feature的组合也很多,在现实中不适用,比如在computer vision问题中feature就太多了.

  

  

Applications

  

  

cost function and BP

   

           

 
  

  

  

  

  

Gradient Checking

  

  

 
  1. we can use Gradient checking to check if the backpropagation algorithm is working correctly.
  2. need randomly initialize theta

Coursera, Machine Learning, Neural Networks: Representation - week4/5的更多相关文章

  1. (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...

  2. Machine Learning - 第4周(Neural Networks: Representation)

    Neural networks is a model inspired by how the brain works. It is widely used today in many applicat ...

  3. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...

  4. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week1 Introduction to deep learning课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learn ...

  5. (转) Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance

    Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance 2018-1 ...

  6. 深度学习的集成方法——Ensemble Methods for Deep Learning Neural Networks

    本文主要参考Ensemble Methods for Deep Learning Neural Networks一文. 1. 前言 神经网络具有很高的方差,不易复现出结果,而且模型的结果对初始化参数异 ...

  7. Stanford机器学习---第四讲. 神经网络的表示 Neural Networks representation

    原文 http://blog.csdn.net/abcjennifer/article/details/7749309 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  8. Coursera, Machine Learning, notes

      Basic theory (i) Supervised learning (parametric/non-parametric algorithms, support vector machine ...

  9. Coursera machine learning 第二周 quiz 答案 Linear Regression with Multiple Variables

    https://www.coursera.org/learn/machine-learning/exam/7pytE/linear-regression-with-multiple-variables ...

随机推荐

  1. java 数组转字符串 字符串转数组

    字符串转数组 使用Java split() 方法 split() 方法根据匹配给定的正则表达式来拆分字符串. 注意: . . | 和 * 等转义字符,必须得加 \\.多个分隔符,可以用 | 作为连字符 ...

  2. php关联Apache和nginx

    编辑apache配置文件httpd.conf,以apache支持php vim /etc/httpd/httpd.conf添加如下二行 AddType application/x-httpd-php ...

  3. 快速傅里叶变换(FFT)

    扯 去北京学习的时候才系统的学习了一下卷积,当时整理了这个笔记的大部分.后来就一直放着忘了写完.直到今天都腊月二十八了,才想起来还有个FFT的笔记没整完呢.整理完这个我就假装今年的任务全都over了吧 ...

  4. 第一篇-ubuntu18.04访问共享文件夹

    1. 在访问Windows共享资料之前,请确保Windows共享是可用的.Linux访问Windows共享或者LInux共享资料给Windows时,都使用Samba软件 rpm -qa | grep ...

  5. JQERY EasyUI Tabs 选项卡 自适应浏览器宽度高度 解决方案

    <script type="text/javascript"> $(window).resize(function () { $('#tt').tabs({ width ...

  6. (基础) 平方和与立方和 hdu2007

    平方和与立方和 链接:http://acm.hdu.edu.cn/showproblem.php?pid=2007 Time Limit: 2000/1000 MS (Java/Others)     ...

  7. pstack跟踪进程栈

    一:简介 这个命令可以显示每个进程的栈跟踪.pstack命令必须由相应进程的宿主或root运行.可以使用pstack来确定进程挂起的位置.此命令允许使用唯一选项就是进程的PID 这个命令在排查进程问题 ...

  8. python nmap

    #!/usr/bin/env python# -*- coding: utf-8 -*-import sysimport nmap scan_row = []input_data = input('P ...

  9. Linux中sed的用法实践

    Linux中sed的用法实践 参考资料:https://www.cnblogs.com/emanlee/archive/2013/09/07/3307642.html http://www.fn139 ...

  10. rancher使用fluentd-pilot收集日志分享

    fluentd-pilot简介 fluentd-pilot是阿里开源的docker日志收集工具,Github项目地址:https://github.com/AliyunContainerService ...