Coursera, Machine Learning, Neural Networks: Representation - week4/5
Neural Network
Motivations
想要拟合一条曲线,在feature 很多的情况下,feature的组合也很多,在现实中不适用,比如在computer vision问题中feature就太多了.
Applications
cost function and BP

.png)

Gradient Checking
- we can use Gradient checking to check if the backpropagation algorithm is working correctly.
- need randomly initialize theta
Coursera, Machine Learning, Neural Networks: Representation - week4/5的更多相关文章
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...
- Machine Learning - 第4周(Neural Networks: Representation)
Neural networks is a model inspired by how the brain works. It is widely used today in many applicat ...
- 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...
- 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week1 Introduction to deep learning课堂笔记
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learn ...
- (转) Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance
Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance 2018-1 ...
- 深度学习的集成方法——Ensemble Methods for Deep Learning Neural Networks
本文主要参考Ensemble Methods for Deep Learning Neural Networks一文. 1. 前言 神经网络具有很高的方差,不易复现出结果,而且模型的结果对初始化参数异 ...
- Stanford机器学习---第四讲. 神经网络的表示 Neural Networks representation
原文 http://blog.csdn.net/abcjennifer/article/details/7749309 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Coursera, Machine Learning, notes
Basic theory (i) Supervised learning (parametric/non-parametric algorithms, support vector machine ...
- Coursera machine learning 第二周 quiz 答案 Linear Regression with Multiple Variables
https://www.coursera.org/learn/machine-learning/exam/7pytE/linear-regression-with-multiple-variables ...
随机推荐
- java 数组转字符串 字符串转数组
字符串转数组 使用Java split() 方法 split() 方法根据匹配给定的正则表达式来拆分字符串. 注意: . . | 和 * 等转义字符,必须得加 \\.多个分隔符,可以用 | 作为连字符 ...
- php关联Apache和nginx
编辑apache配置文件httpd.conf,以apache支持php vim /etc/httpd/httpd.conf添加如下二行 AddType application/x-httpd-php ...
- 快速傅里叶变换(FFT)
扯 去北京学习的时候才系统的学习了一下卷积,当时整理了这个笔记的大部分.后来就一直放着忘了写完.直到今天都腊月二十八了,才想起来还有个FFT的笔记没整完呢.整理完这个我就假装今年的任务全都over了吧 ...
- 第一篇-ubuntu18.04访问共享文件夹
1. 在访问Windows共享资料之前,请确保Windows共享是可用的.Linux访问Windows共享或者LInux共享资料给Windows时,都使用Samba软件 rpm -qa | grep ...
- JQERY EasyUI Tabs 选项卡 自适应浏览器宽度高度 解决方案
<script type="text/javascript"> $(window).resize(function () { $('#tt').tabs({ width ...
- (基础) 平方和与立方和 hdu2007
平方和与立方和 链接:http://acm.hdu.edu.cn/showproblem.php?pid=2007 Time Limit: 2000/1000 MS (Java/Others) ...
- pstack跟踪进程栈
一:简介 这个命令可以显示每个进程的栈跟踪.pstack命令必须由相应进程的宿主或root运行.可以使用pstack来确定进程挂起的位置.此命令允许使用唯一选项就是进程的PID 这个命令在排查进程问题 ...
- python nmap
#!/usr/bin/env python# -*- coding: utf-8 -*-import sysimport nmap scan_row = []input_data = input('P ...
- Linux中sed的用法实践
Linux中sed的用法实践 参考资料:https://www.cnblogs.com/emanlee/archive/2013/09/07/3307642.html http://www.fn139 ...
- rancher使用fluentd-pilot收集日志分享
fluentd-pilot简介 fluentd-pilot是阿里开源的docker日志收集工具,Github项目地址:https://github.com/AliyunContainerService ...