Game HDU - 3657(最小割)
Game
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1563 Accepted Submission(s): 664
the following:
● At the beginning, the score is 0;
● If you take a number which equals to x, the score increase x;
● If there appears two neighboring empty grids after you taken the number, then the score should be decreased by 2(x&y). Here x and y are the values used to existed on these two grids. Please pay attention that "neighboring grids" means there exits and only exits one common border between these two grids.
Since onmylove thinks this problem is too easy, he adds one more rule:
● Before you start the game, you are given some positions and the numbers on these positions must be taken away.
Can you help onmylove to calculate: what's the highest score onmylove can get in the game?
n and m describing the size of the grids is n ×m. k means there are k positions of which you must take their numbers. Then following n lines, each contains m numbers, representing the numbers on the n×m grids.Then k lines follow. Each line contains two integers, representing the row and column of one position
and you must take the number on this position. Also, the rows and columns are counted start from 1.
Limits: 1 ≤ n, m ≤ 50, 0 ≤ k ≤ n × m, the integer in every gird is not more than 1000.
2 2
2 2
1 1
2 2 1
2 7
4 1
1 1
9
As to the second case in Sample Input, onmylove gan get the highest score when calulating like this:
2 + 7 + 4 - 2 × (2&4) - 2 × (2&7) = 13 - 2 × 0 - 2 × 2 = 9.
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = 1e5 + , INF = 0x7fffffff;
int dir[][] = {{, }, {, -}, {, }, {-, }};
int n, m, k, s, t;
int way[][], vv[][];
int head[maxn], cur[maxn], vis[maxn], d[maxn], cnt, nex[maxn << ]; struct node
{
int u, v, c;
}Node[maxn << ]; void add_(int u, int v, int c)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].c = c;
nex[cnt] = head[u];
head[u] = cnt++;
} void add(int u, int v, int c)
{
add_(u, v, c);
add_(v, u, );
} bool bfs()
{
queue<int> Q;
mem(d, );
Q.push(s);
d[s] = ;
while(!Q.empty())
{
int u = Q.front(); Q.pop();
for(int i = head[u]; i != -; i = nex[i])
{
int v = Node[i].v;
if(!d[v] && Node[i].c > )
{
d[v] = d[u] + ;
Q.push(v);
if(v == t) return ;
}
}
}
return d[t] != ;
} int dfs(int u, int cap)
{
int ret = ;
if(u == t || cap == )
return cap;
for(int &i = cur[u]; i != -; i = nex[i])
{
int v = Node[i].v;
if(d[v] == d[u] + && Node[i].c > )
{
int V = dfs(v, min(cap, Node[i].c));
Node[i].c -= V;
Node[i ^ ].c += V;
ret += V;
cap -= V;
if(cap == ) break;
}
}
if(cap > ) d[u] = -;
return ret;
} int Dinic()
{
int ans = ;
while(bfs())
{
memcpy(cur, head, sizeof head);
ans += dfs(s, INF);
}
return ans;
} int main()
{
while(scanf("%d%d%d", &n, &m, &k) != EOF)
{
int sum = ;
s = , t = n * m + ;
mem(head, -), cnt = , mem(vv, );
int w, x, y;
rap(i, , n)
rap(j, , m)
rd(way[i][j]), sum += way[i][j];
rap(i, , k)
{
rd(x), rd(y);
if((x + y) & )
add(s, (x - ) * m + y, INF);
else add((x - ) * m + y, t, INF);
vv[x][y] = ;
}
rap(i, , n)
rap(j, , m)
{
rep(k, , )
{
int nx = i + dir[k][];
int ny = j + dir[k][];
if(nx < || ny < || nx > n || ny > m) continue;
if((i + j) & )
add((i - ) * m + j, (nx - ) * m + ny, * (way[i][j] & way[nx][ny]));
}
if(vv[i][j]) continue;
if((i + j) & ) add(s, (i - ) * m + j, way[i][j]);
else add((i - ) * m + j, t, way[i][j]);
}
cout << sum - Dinic() << endl; } return ;
}
Game
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1563 Accepted Submission(s): 664
the following:
● At the beginning, the score is 0;
● If you take a number which equals to x, the score increase x;
● If there appears two neighboring empty grids after you taken the number, then the score should be decreased by 2(x&y). Here x and y are the values used to existed on these two grids. Please pay attention that "neighboring grids" means there exits and only exits one common border between these two grids.
Since onmylove thinks this problem is too easy, he adds one more rule:
● Before you start the game, you are given some positions and the numbers on these positions must be taken away.
Can you help onmylove to calculate: what's the highest score onmylove can get in the game?
n and m describing the size of the grids is n ×m. k means there are k positions of which you must take their numbers. Then following n lines, each contains m numbers, representing the numbers on the n×m grids.Then k lines follow. Each line contains two integers, representing the row and column of one position
and you must take the number on this position. Also, the rows and columns are counted start from 1.
Limits: 1 ≤ n, m ≤ 50, 0 ≤ k ≤ n × m, the integer in every gird is not more than 1000.
2 2
2 2
1 1
2 2 1
2 7
4 1
1 1
9
As to the second case in Sample Input, onmylove gan get the highest score when calulating like this:
2 + 7 + 4 - 2 × (2&4) - 2 × (2&7) = 13 - 2 × 0 - 2 × 2 = 9.
Game HDU - 3657(最小割)的更多相关文章
- hdu 3657 最小割的活用 / 奇偶方格取数类经典题 /最小割
题意:方格取数,如果取了相邻的数,那么要付出一定代价.(代价为2*(X&Y))(开始用费用流,敲升级版3820,跪...) 建图: 对于相邻问题,经典方法:奇偶建立二分图.对于相邻两点连边2 ...
- hdu 3657 最小割(牛逼!!!!)总算理解了
<strong></strong> 转载:http://blog.csdn.net/me4546/article/details/6662959 加颜色的太棒了!!! 在网上看 ...
- hdu 4289(最小割)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4289 思路:求最小花费,最小割应用,将点权转化为边权,拆点,(i,i+n)之间连边,容量为在城市i的花 ...
- hdu 5076 最小割灵活运用
这意味着更复杂的问题,关键的事实被抽象出来:每个点,能够赋予既有的值(挑两个一.需要选择,设定ai,bi). 寻找所有和最大.有条件:如果两个点同时满足: 1,:二进制只是有一个不同之处. 2:中的 ...
- hdu 1565 最小割
黑白染色,源指向白,黑指向汇,容量都是方格中数的大小,相邻的格子白指向黑,容量为oo,然后求一次最小割. 这个割是一个简单割,如果只选择不在割中的点,那么一种割就和一个选数方案一一对应,割的大小就是不 ...
- Being a Hero (hdu 3251 最小割 好题)
Being a Hero Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
- hdu 3691最小割将一个图分成两部分
转载地址:http://blog.csdn.net/xdu_truth/article/details/8104721 题意:题给出一个无向图和一个源点,让你求从这个点出发到某个点最大流的最小值.由最 ...
- [HDU 3521] [最小割] Being a Hero
题意: 在一个有向图中,有n个点,m条边$n \le 1000 \And \And m \le 100000$ 每条边有一个破坏的花费,有些点可以被选择并获得对应的金币. 假设一个可以选的点是$x$ ...
- hdu 1569 最小割
和HDU 1565是一道题,只是数据加强了,貌似轮廓线DP来不了了. #include <cstdio> #include <cstring> #include <que ...
随机推荐
- Nginx 通过 Lua + Redis 实现动态封禁 IP
一.背景 为了封禁某些爬虫或者恶意用户对服务器的请求,我们需要建立一个动态的 IP 黑名单.对于黑名单之内的 IP ,拒绝提供服务. 二.架构 实现 IP 黑名单的功能有很多途径: 1.在操作系统层面 ...
- Python监控服务器利器--psutil
Python监控服务器利器--psutil 服务器的监控通过安装一些常用的监控软件之外,有时也需要运行一些shell或Python脚本:shell下可以使用系统自带的ps/free/top/df等sh ...
- itoa()函数和atoi()函数详解
C语言提供了几个标准库函数,可以将任意类型(整型.长整型.浮点型等)的数字转换为字符串. 以下是用itoa()函数将整数转换为字符串的一个例子:# include <stdio.h># i ...
- 关于 pip安装的可能错误的排除
今天安装selenium总是报错(下为错误信息) C:\Python27\Scripts>pip install seleniumCollecting seleniumC:\Python27\l ...
- 爬虫——selenium基础
Selenium,自动化浏览器技术.主要用于web应用自动测试和自动完成web基本任务管理.官方网站:https://selenium-python.readthedocs.io/getting-st ...
- Druid Monitor开启登录界面
<!-- druid --> <filter> <filter-name>druidWebStatFilter</filter-name> <fi ...
- Linux下用rm删除的文件的恢复方法
Linux下用rm删除的文件的恢复方法_Linux教程_Linux公社-Linux系统门户网站https://www.linuxidc.com/Linux/2008-08/14744.htm linu ...
- MySQL客户端工具及SQL
一.客户端命令介绍 mysql mysqladmin mysqldump mysql 1.用于数据库的连接管理 2. mysqladmin 1. 2. mysqldump 1. 2.
- ubuntu18.04 安装 php7.2
sudo apt-get install software-properties-common python-software-properties sudo add-apt-repository p ...
- 转载 -- jquery easyui datagrid 动态表头 + 嵌套对象属性展示
代码功能: 1.datagrid 的表头由后台生成,可以配置在数据库 2.datagrid 的列绑定数据 支撑嵌套对象 $(function() { var columns = new Array() ...