Graham Scan凸包算法
获得凸包的算法可以算是计算几何中最基础的算法之一了。寻找凸包的算法有很多种,Graham Scan算法是一种十分简单高效的二维凸包算法,能够在O(nlogn)的时间内找到凸包。
首先介绍一下二维向量的叉积(这里和真正的叉积还是不同的):对于二维向量a=(x1,y2)和b=(x2,y2),a×b定义为x1*y2-y1*x2。而它的几何意义就是|a||b|sin<a,b>。如果a与b夹角小于180度(逆时针),那么这个值就是正值,大于180度就是负值。需要注意的是,左乘和右乘是不同的。如图所示:
Graham Scan算法的做法是先定下一个起点,一般是最左边的点和最右边的点,然后一个个点扫过去,如果新加入的点和之前已经找到的点所构成的“壳”凸性没有变化,就继续扫,否则就把已经找到的最后一个点删去,再比较凸性,直到凸性不发生变化。分别扫描上下两个“壳”,合并在一起,凸包就找到了。这么说很抽象,我们看图来解释:
我们找下“壳”,上下其实是一样的。首先加入两个点A和C:
然后插入第三个点G,并计算AC×CG的叉积,却发现叉积小于0,也就是说逆时针方向上∠ACG大于180度,于是删去C点,加入G点:
然后就是依照这个步骤便能加入D点。在AD上方是以D为起点。就能够找到AGD和DFEA两个凸壳。合并就得到了凸包。
关于扫描的顺序,有坐标序和极角序两种。坐标序是比较两个点的x坐标,如果小的先被扫描(扫描上凸壳的时候反过来);如果两个点x坐标相同,那么就比较y坐标,小的先被扫描(扫描上凸壳的时候也是反过来)。极角序使用arctan2函数的返回值进行比较,我没写过所以也不是很清楚。
程序可以写得很精简,以下是我用C++写得凸包程序
/*
d[]是一个Point的数组,Point有两个两个属性x和y,同时支持减法操作和det(叉积)。
convex数组保存被选中的凸包的点的编号,cTotal是凸包中点的个数
*/
bool cmpPoint(const Point &a, const Point &b) //比较坐标序所用的比较函数
{
if (a.x!=b.x) return a.x<b.x;
return a.y<b.y;
}
void get_convex_hull()
{
sort(d,d+N,cmpPoint);
int Total=0,tmp;
for (int i=0;i<N;++i) //扫描下凸壳
{
while ( (Total>1) &&
((d[convex[Total-1]]-d[convex[Total-2]]).det( //获得凸包中最后两个点的向量
d[i]-d[convex[Total-1]])<=0) ) Total--; //获得准备插入的点和凸包中最后一点的向量,计算叉积
convex[Total++]=i;
}
tmp=Total;
for (int i=N-2;i>=0;--i) //扫描上凸壳
{
while ( (Total>tmp) &&
((d[convex[Total-1]]-d[convex[Total-2]]).det(
d[i]-d[convex[Total-1]])<=0) ) Total--;
convex[Total++]=i;
}
cTotal=Total;
}
我们来看一道题:POJ1113 Wall,题意是给一些点,找一个闭合曲线C,使C能包住所有的点,并且给定的点到C的距离最小为L,问C的周长。稍微画一画就知道这个C的周长是这些点所构成的凸包的周长加上以L为半径的圆的周长。于是求一个凸包再加上2πL就可以了。我的程序如下:
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <cmath>
using std::sort;
#define MAXN 1002
int N,L;
double sqr(double a)
{
return a*a;
}
struct Point
{
double x,y;
inline Point operator- (const Point &t)
{
Point ret;
ret.x=x-t.x;
ret.y=y-t.y;
return ret;
}
inline Point operator+ (const Point &t)
{
Point ret;
ret.x=x+t.x;
ret.y=y+t.y;
return ret;
}
inline int det(const Point &t)
{
return x*t.y-t.x*y;
}
inline double dist(Point &t)
{
return sqrt(sqr(x-t.x)+sqr(y-t.y));
}
}d[MAXN];
bool cmpPoint(const Point &a, const Point &b)
{
if (a.x!=b.x) return a.x<b.x;
return a.y<b.y;
}
int convex[MAXN],cTotal;
void get_convex_hull()
{
sort(d,d+N,cmpPoint);
int Total=0,tmp;
for (int i=0;i<N;++i)
{
while ( (Total>1) &&
((d[convex[Total-1]]-d[convex[Total-2]]).det(
d[i]-d[convex[Total-1]])<=0) ) Total--;
convex[Total++]=i;
}
tmp=Total;
for (int i=N-2;i>=0;--i)
{
while ( (Total>tmp) &&
((d[convex[Total-1]]-d[convex[Total-2]]).det(
d[i]-d[convex[Total-1]])<=0) ) Total--;
convex[Total++]=i;
}
cTotal=Total;
}
int main()
{
scanf("%d%d",&N,&L);
for (int i=0;i<N;++i)
{
scanf("%lf%lf",&d[i].x,&d[i].y);
}
get_convex_hull();
double Ans=0;
for (int i=0;i<cTotal-1;++i)
{
Ans+=d[convex[i]].dist(d[convex[i+1]]);
}
Ans+=d[convex[0]].dist(d[convex[cTotal-1]]);
Ans+=3.1415926*2*L;
printf("%.0lf\n",Ans);
return 0;
}
Graham Scan凸包算法的更多相关文章
- Beauty Contest(graham求凸包算法)
Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 25256 Accepted: 7756 Description Bess ...
- 凸包Graham Scan算法实现
凸包算法实现点集合中搜索凸包顶点的功能,可以处理共线情况,可以输出共线点也可以不输出而只输出凸包顶点.经典的Graham Scan算法,点排序使用极角排序方式,并对共线情况做特殊处理.一般算法是将共线 ...
- 凸包问题 Graham Scan
2020-01-09 15:14:21 凸包问题是计算几何的核心问题,并且凸包问题的研究已经持续了好多年,这中间涌现出了一大批优秀的算法. 凸包问题的最优解法是Graham Scan算法,该算法可以保 ...
- 凸包问题——Graham Scan
Graham Scan 概述: 对于凸多边形的定义不在这里做详细叙述,这里给出算法的实现原理. Step 1: 找出x值最小的点的集合,从其中找出y值最小的点作为初始点 Step 2: 获得新序列后, ...
- POJ1113:Wall (凸包算法学习)
题意: 给你一个由n个点构成的多边形城堡(看成二维),按顺序给你n个点,相邻两个点相连. 让你围着这个多边形城堡建一个围墙,城堡任意一点到围墙的距离要求大于等于L,让你求这个围墙的最小周长(看成二维平 ...
- 圈水池 nyoj 78 凸包算法
圈水池 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 有一个牧场,牧场上有很多个供水装置,现在牧场的主人想要用篱笆把这些供水装置圈起来,以防止不是自己的牲畜来喝水, ...
- openlayer的凸包算法实现
最近在要实现一个openlayer的凸多边形,也遇到了不小的坑,就记录一下 1.具体的需求: 通过在界面点击,获取点击是的坐标点,来绘制一个凸多边形. 2.思考过程: 1)首先,我们得先获取点击事件发 ...
- CBO之Full Table Scan - FTS算法
转载请注明出处:http://blog.csdn.net/guoyjoe/article/details/44261859 ************************************** ...
- 计算几何-凸包算法 Python实现与Matlab动画演示
凸包算法是计算几何中的最经典问题之一了.给定一个点集,计算其凸包.凸包是什么就不罗嗦了 本文给出了<计算几何——算法与应用>中一书所列凸包算法的Python实现和Matlab实现,并给出了 ...
随机推荐
- iOS开发——无网占位图的实现
https://www.jianshu.com/p/d537393fe247 https://github.com/wyzxc/CQPlaceholderViewhttps://github.com/ ...
- NEST.net Client
NEST.net Client For Elasticsearch简单应用 由于最近的一个项目中的搜索部分要用到 Elasticsearch 来实现搜索功能,苦于英文差及该方面的系统性资料不好找,在实 ...
- 软件工程(FZU2015) 赛季得分榜,第三回合
SE_FZU目录:1 2 3 4 5 6 7 8 9 10 11 12 13 积分规则 积分制: 作业为10分制,练习为3分制:alpha30分: 团队项目分=团队得分+个人贡献分 个人贡献分: 个人 ...
- PhpStorm的注册激活方法
首先,需要修改本地的hosts文件(路径一般为C:\Windows\System32\drivers\etc\hosts),添加下面这行代码. 0.0.0.0 account.jetbrains.co ...
- pinpoint vs druid
主流Java数据库连接池分析(C3P0,DBCP,TomcatPool,BoneCP,Druid) - ppjj - 博客园 https://www.cnblogs.com/nizuimeiabc1/ ...
- 图片转字符画 【学习ing】
1.创建ascii.py 2. 下面是 ascii.py 的完整代码: from PIL import Image import argparse #命令行输入参数处理 parser = argpar ...
- Azure系列2.1.2 —— BlobContainerProperties
(小弟自学Azure,文中有不正确之处,请路过各位大神指正.) 网上azure的资料较少,尤其是API,全是英文的,中文资料更是少之又少.这次由于公司项目需要使用Azure,所以对Azure的一些学习 ...
- spring AOP的用法
AOP,面向切面编程,它能把与核心业务逻辑无关的散落在各处并且重复的代码给封装起来,降低了模块之间的耦合度,便于维护.具体的应用场景有:日志,权限和事务管理这些方面.可以通过一张图来理解下: Spri ...
- C# Note28: Dispatcher类
在项目中也是经常用到: 刚见到它时,你会想:为什么不直接使用System.Windows命名空间下的MessageBox类,何必要这么麻烦?(认真分析看它做了什么,具体原因下面解释) 主要介绍的方法: ...
- 不停机修改线上 MySQL 主键字段 以及其带来的问题和总结思考
起因: 线上 user 数据库没有自增字段,数据量已经达到百万级.无论是给离线仓库还是数据分析同步数据,没有主键自增 id 都是杀手级的困难.所以在使用 create_time 痛苦了几次之后准备彻底 ...