题意

\[\sum_{i = 1}^{n} \sum_{i = 1}^{n} f(\gcd(i, j))^k \pmod {2^{32}}
\]

其中 \(f(x)\) 为 \(x\) 的次大质因子,重复的质因子计算多次

特别的,定义 \(f(1) = 0, f(p) = 0\) ,此处 \(p\) 为质数。

题解

首先先莫比乌斯反演前几步。

\[ans = \sum_{d = 1}^{n} f(d)^k \sum_{i = 1}^{\lfloor \frac{n}{d} \rfloor} \mu(x) (\lfloor \frac{n}{dx} \rfloor)^2
\]

令 \(T = dx\) 那么就化为

\[= \sum_{T = 1}^{n} (\lfloor \frac{n}{T} \rfloor)^2 \sum_{d | T} f(d)^k \mu(\frac{T}{d})
\]

令 \(f(d)^k = F(d)\) 那么就变成

\[= \sum_{T = 1}^{n} (\lfloor \frac{n}{T} \rfloor)^2 (F * \mu)(T)
\]

那么我们整除分块后,只需要快速求 \((F * \mu)\) 的前缀和即可,令 \(\displaystyle S(n) = \sum_{i = 1}^n (F * \mu)(i)\) 。

我们知道 \(\mu * 1 = \epsilon\) ,由于狄里克雷卷积满足结合律,就有 \(F * \mu * 1 = F\) 。

所以我们套上杜教筛的式子,就可以得到

\[S(n) = \sum_{i = 1}^n F(i) - \sum_{i = 2}^n S(\lfloor \frac n i \rfloor)
\]

杜教筛好像不好算 \(\displaystyle \sum_{i = 1}^n F(i)\) ,其实这是道 原题

min25 筛合数的部分 十分契合次大质因子的过程。

每次我们枚举了最小质因子的值,下一次递归计算 \(S(n, i)\) 的时候,那么在 \(P_i \sim P_{|P|}\) 的所有质数上次枚举过来的次大质因子一定都是 \(P_{i - 1}\) 。

那么直接在此处加上贡献即可,不要忘记 \(p^e\) 的贡献要加上去。

复杂度???如果考虑预处理前 \(n^{2 / 3}\) 的答案,并且对于合数部分记忆化的话,应该比较正确。。。

但似乎直接实现虽然有点慢,但也能过???

代码

#include <bits/stdc++.h>

#define For(i, l, r) for (register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for (register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Rep(i, r) for (register int i = (0), i##end = (int)(r); i < i##end; ++i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << (x) << endl using namespace std; using ll = long long;
using ui = unsigned int; template<typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, T b) { return b > a ? a = b, 1 : 0; } inline ui read() {
ui x(0), sgn(1); char ch(getchar());
for (; !isdigit(ch); ch = getchar()) if (ch == '-') sgn = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * sgn;
} void File() {
#ifdef zjp_shadow
freopen ("572.in", "r", stdin);
freopen ("572.out", "w", stdout);
#endif
} const int N = 1e5 + 1e3; int prime[N], pcnt; bitset<N> is_prime; ui Pow[N], k; ui fpm(ui x, ui power) {
ui res = 1;
for (; power; power >>= 1, x *= x)
if (power & 1) res *= x;
return res;
} void Linear_Sieve(int maxn) {
is_prime.set();
For (i, 2, maxn) {
if (is_prime[i])
prime[++ pcnt] = i, Pow[pcnt] = fpm(i, k);
for (int j = 1; j <= pcnt && 1ll * i * prime[j] <= maxn; ++ j) {
is_prime[i * prime[j]] = false; if (!(i % prime[j])) break;
}
}
} int id1[N], id2[N]; ui val[N * 2], ptot[N * 2], d, all; #define id(x) (x <= d ? id1[x] : id2[all / (x)]) void Min25_Sieve(ui n) {
int cnt = 0;
for (ui i = 1; i <= n; i = n / (n / i) + 1)
val[id(n / i) = ++ cnt] = n / i, ptot[cnt] = val[cnt] - 1; for (int i = 1; i <= pcnt && 1ll * prime[i] * prime[i] <= n; ++ i)
for (int j = 1; j <= cnt && 1ll * prime[i] * prime[i] <= val[j]; ++ j)
ptot[j] -= ptot[id(val[j] / prime[i])] - (i - 1);
} ui S(ui n, int cur) {
if (n <= 1 || (ui)prime[cur] > n) return 0;
ui res = (ptot[id(n)] - (cur - 1)) * Pow[cur - 1];
for (int i = cur; i <= pcnt && 1ll * prime[i] * prime[i] <= n; ++ i) {
ui prod = prime[i];
for (int e = 1; 1ll * prod * prime[i] <= n; ++ e, prod *= prime[i])
res += S(n / prod, i + 1) + Pow[i];
}
return res;
} bitset<N * 2> vis; ui M[N * 2]; ui Calc(ui n) {
if (vis[id(n)]) return M[id(n)];
ui res = S(n, 1) + ptot[id(n)];
for (ui i = 2, ni; i <= n; i = ni + 1)
ni = n / (n / i), res -= (ni - i + 1) * Calc(n / i);
return vis[id(n)] = true, M[id(n)] = res;
} int main () { File(); ui n = read(); k = read(); Linear_Sieve(d = sqrt(n + .5)); all = n; Min25_Sieve(n); ui ans = 0, Last = 0;
for (ui i = 1, ni; i <= n; i = ni + 1) {
ni = n / (n / i); ui res = Calc(ni);
ans += (n / i) * (n / i) * (res - Last); Last = res;
}
printf ("%u\n", ans); return 0; }

LOJ# 572. 「LibreOJ Round #11」Misaka Network 与求和(min25筛,杜教筛,莫比乌斯反演)的更多相关文章

  1. LOJ 572 「LibreOJ Round #11」Misaka Network 与求和——min_25筛

    题目:https://loj.ac/problem/572 莫比乌斯反演得 \( ans=\sum\limits_{D=1}^{n}\left\lfloor\frac{n}{D}\right\rflo ...

  2. Loj#572. 「LibreOJ Round #11」Misaka Network 与求和

    题目 有生之年我竟然能\(A\) 这个题求的是这个 \[\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))^k\] \(f(i)\)定义为\(i\)的次大质因子,其中\(f(p)= ...

  3. LOJ572. 「LibreOJ Round #11」Misaka Network 与求和 [莫比乌斯反演,杜教筛,min_25筛]

    传送门 思路 (以下令\(F(n)=f(n)^k\)) 首先肯定要莫比乌斯反演,那么可以推出: \[ ans=\sum_{T=1}^n \lfloor\frac n T\rfloor^2\sum_{d ...

  4. [LOJ#530]「LibreOJ β Round #5」最小倍数

    [LOJ#530]「LibreOJ β Round #5」最小倍数 试题描述 第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话: 您的文 ...

  5. [LOJ#516]「LibreOJ β Round #2」DP 一般看规律

    [LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...

  6. [LOJ#531]「LibreOJ β Round #5」游戏

    [LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...

  7. [LOJ#515]「LibreOJ β Round #2」贪心只能过样例

    [LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...

  8. [LOJ#525]「LibreOJ β Round #4」多项式

    [LOJ#525]「LibreOJ β Round #4」多项式 试题描述 给定一个正整数 k,你需要寻找一个系数均为 0 到 k−1 之间的非零多项式 f(x),满足对于任意整数 x 均有 f(x) ...

  9. [LOJ#526]「LibreOJ β Round #4」子集

    [LOJ#526]「LibreOJ β Round #4」子集 试题描述 qmqmqm有一个长为 n 的数列 a1,a2,……,an,你需要选择集合{1,2,……,n}的一个子集,使得这个子集中任意两 ...

随机推荐

  1. Java面试题详解一:面向对象三大特性

    一,多态:1.面向对象四大基本特性:抽象,封装,继承,多态抽象,封装,继承是多态的基础.多态是抽象,封装,继承的表现.2.什么是多态不同类的对象对同一消息作出不同的响应叫做多态3.多态的作用简单来说: ...

  2. bridge br0 docker 网络问题 Docker Container与Docker Host

    Docker学习笔记:Docker 网络配置 - docker ppt - docker中文社区http://www.docker.org.cn/dockerppt/111.html Bridge t ...

  3. MySQL 性能调优之SQL

    原文:http://bbs.landingbj.com/t-0-245451-1.html 对于SQL的优化,我们主要提供调整执行计划.优化SQL的方法有:缩短访问的路径.尽早过滤数据.尽可能减少排序 ...

  4. windows中dir命令

    最近想用dos命令打印指定目录下的所有文件夹的完整路径.最终发现可用dir命令来实现.在此学习下dir的各项命令. 32位win7系统上,打印帮助文档. D:\test>dir /? 显示目录中 ...

  5. 前端知识点总结(HTML)

    前端知识点总结(HTML) 一,头部常用的标签 1,link标签  (1),设置ico图标 <link rel="shortcut icon" href="favi ...

  6. React Native之(支持iOS与Android)自定义单选按钮(RadioGroup,RadioButton)

    React Native之(支持iOS与Android)自定义单选按钮(RadioGroup,RadioButton) 一,需求与简单介绍 在开发项目时发现RN没有给提供RadioButton和Rad ...

  7. Angular ngRepea

    <!DOCTYPE html><html ng-app><head lang="en"> <meta charset="UTF- ...

  8. linux安装httpd,做文件服务器

    在一个团队或者公司层面上,做一个本地的文件服务器,将网上的资源下载到本地,是有必要的.这将节省其他人的很多下载时间. >>提君博客原创  http://www.cnblogs.com/ti ...

  9. Day 5-4封装.__隐藏属性或者方法

    封装 property 封装,也就是把客观事物封装成抽象的类,并且类可以把自己的数据和方法只让可信的类或者对象操作,对不可信的进行信息隐藏. 在python中用双下划线开头的方式将属性隐藏起来(设置成 ...

  10. C# Note23: 如何自定义类型使用foreach循环

    前言 在foreach语句代码中,我们经常是对List,Collection,Dictionary等类型的数据进行操作,不过C#允许用户自定义自己的类型来使用foreach语句.那么自定义类型能够使用 ...