训练指南P198

题意:给出一个非降序排列的整数数组a1, a2…… an,你的任务是对于一系列询问(i,j),回答ai, ai+1 ……aj 中出现的次数最多的次数

这题不仅学到了rmq的应用还学到了游程编码

对于一组数 -1, 1, 1, 2, 2, 2, 4就可以编码成(-1, 1), (1, 2), (2, 3), (4, 1),其中(a, b)表示 b 个连续的 a,cnt[i]表示第 i 段中数出现的次数。num[p] 表示p位置的数所在的段的标号, left[p]表示p位置的数所在段的左边那个数的下标, right[p]表示p位置的数所在段的右边那个数的下标。

那么对于查询(L, R)的结果就是下面三个中的最大的  从 L 到 L 所在段的结束出的元素(right[l] - l + 1)这里都是与L处的数相等的,然后从r所在的段开始到r处的元素的个数( r - left[r] + 1) 都是与r处相等的,然后还有中间的 (num[l] + 1, num[r] - 1)段的cnt的最大值

 #include <cstring>
#include <algorithm>
#include <cstdio>
#include <string.h>
#include <iostream>
using namespace std;
const int INF = 0x3f3f3f3f;
const int Max = + ;
int n, m, tot;
int num[Max], Right[Max], Left[Max], cnt[Max];
int dp[Max][];
//dp[i][j] 表示 i 段开始长度为2^j长度的区间
void RMQ_init()
{
memset(dp, , sizeof(dp));
for (int i = ; i <= tot; i++)
dp[i][] = cnt[i];
for (int j = ; ( << j) <= n; j++) // 这里的长度 是 n 是整个区间内的全部元素,
{
for (int i = ; i + ( << j) - <= tot; i++) //
{
dp[i][j] = max(dp[i][j - ], dp[i + ( << (j - )) ][j - ]);
}
}
}
int RMQ(int l, int r)
{
if (l > r)
return ;
int k = ;
while ( << (k + ) <= (r - l + ))
k++;
return max(dp[l][k], dp[r - ( << k) + ][k]);
}
int main()
{
while (scanf("%d", &n) != EOF && n)
{
scanf("%d", &m);
memset(num, , sizeof(num));
memset(Right, , sizeof(Right));
memset(Left, , sizeof(Left));
memset(cnt, , sizeof(cnt));
int temp, last = INF;
tot = ;
for (int i = ; i <= n; i++)
{
scanf("%d", &temp);
if (temp == last) // 如果与前面的数相等
{
num[i] = tot; // 当前位置的段号不变
Right[tot]++; //当前段的右边的位置+1,
cnt[tot]++; //当前段的元素个数+1
}
else //如果不与前面的数相等则开启一个新的段
{
num[i] = ++tot; // 段号++,
cnt[tot]++;
Left[tot] = Right[tot] = i; // 当前段的左右端点都是i
last = temp; // 记录一下当前的元素
}
}
RMQ_init();
int l, r;
while (m--)
{
scanf("%d%d", &l, &r);
if (num[l] == num[r])
{
printf("%d\n", r - l + );
continue;
}
printf("%d\n", max(RMQ(num[l] + , num[r] - ), max(Right[ num[l] ] - l + , r - Left[ num[r] ] + )));
}
}
return ;
}

UVA 11235Frequent values(RMQ)的更多相关文章

  1. RMQ算法 以及UVA 11235 Frequent Values(RMQ)

    RMQ算法 简单来说,RMQ算法是给定一组数据,求取区间[l,r]内的最大或最小值. 例如一组任意数据 5 6 8 1 3 11 45 78 59 66 4,求取区间(1,8)  内的最大值.数据量小 ...

  2. UVA 11235 Frequent Values ---RMQ

    大白书上的例题,具体讲解见大白书,最好用用一个Log数组直接求k,这样就是纯O(1)了 #include <iostream> #include <cstdio> #inclu ...

  3. UVa 11235 Frequent values (RMQ && 区间出现最多次的数的次数)

    题意 : 给出一个长度为 n 的不降序序列,并且给出 q 个形如(L, R)的问询,问你这个区间出现的最多次的数的次数. 分析 : 很自然的想到将区间“缩小”,例如1 1 2 3 3 3就可以变成2 ...

  4. POJ3368Frequent values[RMQ 游程编码]

    Frequent values Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17581   Accepted: 6346 ...

  5. poj 3368 Frequent values(RMQ)

    /************************************************************ 题目: Frequent values(poj 3368) 链接: http ...

  6. POJ 3368 Frequent values RMQ ST算法/线段树

                                                         Frequent values Time Limit: 2000MS   Memory Lim ...

  7. poj3368Frequent values(RMQ)

    http://poj.org/problem?id=3368 追完韩剧 想起这题来了 想用线段树搞定来着 结果没想出来..然后想RMQ 想出来了 算是离散吧 把每个数出现的次数以及开始的位置及结束的位 ...

  8. [poj3368]Frequent values(rmq)

    题意:给出n个数和Q个询问(l,r),对于每个询问求出(l,r)之间连续出现次数最多的次数. 解题关键:统计次数,转化为RMQ问题,运用st表求解,注意边界. 预处理复杂度:$O(n\log n)$ ...

  9. POJ 3368 Frequent values(RMQ 求区间出现最多次数的数字的次数)

    题目链接:http://poj.org/problem? id=3368 Description You are given a sequence of n integers a1 , a2 , .. ...

随机推荐

  1. arcgis api for js共享干货系列之一自写算法实现地图量算工具

    众所周知,使用arcgis api for js实现地图的量算工具功能,无非是调用arcgisserver的Geometry服务(http://localhost:6080/arcgis/rest/s ...

  2. arcgis 许可异常的解决

    异常现象: arcgis 许可服务管理器中无法重新读取许可,许可服务启动后立即停止.         解决方法: 1.卸载license:安装新的license!重新破解,替换license文件夹BI ...

  3. 在项目中使用ExtJS

    主要目录文件介绍 builds:压缩后的ExtJS代码,体积更小,更快:docs:开发文档:examples:官方演示示例:locale:多国语言资源文件:pkgs:ExtJS各部分功能的打包文件:r ...

  4. 关于DOM的一些总结(未完待续......)

    DOM 实例1:购物车实例(数量,小计和总计的变化) 这里主要是如何获取页面元素的节点: document.getElementById("...") cocument.query ...

  5. Eos开发——构造查询条件

    1.ajax 方式 var data = { orgid :orgid,year:year ,month: month,type:type,sortField:'sellEmpname' ,sortO ...

  6. oracel数据导出导入

    一.导出模式(三种模式)及命令格式 1. 全库模式 exp 用户名/密码@网络服务名 full=y file=路径\文件名.dmp log=路径\文件名.log 2. 用户模式(一般情况下采用此模式) ...

  7. Oracle学习笔记十 使用PL/SQL

    PL/SQL 简介 PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言,是对 SQL 的扩展,它支持多种数据类型,如大对象和集合类型,可使用 ...

  8. Windows Server 2012 虚拟化实战:网络(二)

    关于Windows Server的虚拟化网络,前文描述了在操作系统层面上的出现的配置变化.其中的一些配置通过Windows Server提供的小工具即可实现,如网卡组的配置,而有些需要安装Window ...

  9. NodeJS、NPM安装配置步骤(windows版本)

    windows下的NodeJS安装是比较方便的(v0.6.0版本之后,支持windows native),只需要登陆官网(http://nodejs.org/),便可以看到首页的"INSTA ...

  10. UOJ #58 【WC2013】 糖果公园

    题目链接:糖果公园 听说这是一道树上莫队的入门题,于是我就去写了--顺便复习了一下莫队的各种姿势. 首先,我们要在树上使用莫队,那么就需要像序列一样给树分块.这个分块的过程就是王室联邦这道题(vfle ...