LOJ 2004 100pts

首先我们肯定要建AC自动机的。。

那么这题就肯定是个AC自动机上\(dp\)。

所以想想状态。

首先如果我们把状态设成这样行不行:

\(dp(i)\)表示匹配到了i节点的概率。

那么转移的时候就是\(dp(i)=\frac{1}{2}\sum dp(go_i^c)\)。

这样的转移是有环的。。。所以高斯消元。。。

但是!AC自动机的节点数是\(O(n^2)\)的。。。

所以T得飞起。。

那么试着改一改?

改为\(dp(i)\)直接表示第i个串第一次出现的概率?

那么转移很难啊。

如果我们当前的串为\(S\),并且没有任何的串在其中出现过,设所有的\(S\)的概率综合为\(fail\)。

那么我们在\(S\)后硬生生地加上\(s_i\),那么这个概率是\(fail\times frac{1}{2}^m\)。

但是可能中间会有某个\(s_j\)出现。

那么现在的串可以变形成\(S\)的一个前缀\(+s_j+s_i\)的一个后缀

其中\(s_i\)的一个前缀和\(s_j\)的一个后缀匹配。(这不就是\(fail\)指针吗!

其中的概率是\(dp(j)\times frac{1}{2}^{len(suf(s_i))}\)。

所以转移方程就出来了。

但是。。。这个还是有环的。。。所以高斯消元。。。

可惜我们只有\(n\)个方程,却有\(n+1\)个未知数。

但注意到所有串第一次出现的概率之和为\(1\)就释然了。

做完了。。。

【LOJ 2004】「SDOI2017」硬币游戏的更多相关文章

  1. @loj - 2004@ 「SDOI2017」硬币游戏

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数 ...

  2. 题解 「SDOI2017」硬币游戏

    题目传送门 Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利. 大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实在是太单调了. 同学们觉得要加强 ...

  3. 「SDOI2017」硬币游戏

    题目链接 问题分析 首先一个显然的做法就是建出AC自动机,然后高斯消元.但是这样的复杂度是\(O(n^3m^3)\)的. 我们发现其实只需要求AC自动机上\(n\)个状态的概率,而其余的概率是没有用的 ...

  4. 【LOJ】#2067. 「SDOI2016」硬币游戏

    题解 c一样的就是一个独立的游戏 我们对于2和3的指数 sg[i][j] 表示\(c \cdot 2^i \cdot 3^j\)的棋子,只有这个硬币是反面,翻转的硬币是正面的sg值 枚举sg函数所有可 ...

  5. loj#2269. 「SDOI2017」切树游戏

    还是loj的机子快啊... 普通的DP不难想到,设F[i][zt]为带上根玩出zt的方案数,G[i][zt]为子树中的方案数,后面是可以用FWT优化的 主要是复习了下动态DP #include< ...

  6. loj#2002. 「SDOI2017」序列计数(dp 矩阵乘法)

    题意 题目链接 Sol 质数的限制并没有什么卵用,直接容斥一下:答案 = 忽略质数总的方案 - 没有质数的方案 那么直接dp,设\(f[i][j]\)表示到第i个位置,当前和为j的方案数 \(f[i ...

  7. LOJ #2005. 「SDOI2017」相关分析 线段树维护回归直线方程

    题目描述 \(Frank\) 对天文学非常感兴趣,他经常用望远镜看星星,同时记录下它们的信息,比如亮度.颜色等等,进而估算出星星的距离,半径等等. \(Frank\) 不仅喜欢观测,还喜欢分析观测到的 ...

  8. LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)

    题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...

  9. Loj #3056. 「HNOI2019」多边形

    Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...

随机推荐

  1. Vue基础01vue的基本示例,vue的双向数据绑定,vue中常见的几种用法,vue相关常见指令

    自学vue框架,每天记录重要的知识点,与大家分享!有不足之处,希望大家指正. 本篇将讲述:vue的基本示例,vue的双向数据绑定,vue中常见的几种用法,vue相关常见指令 前期学习基础,使用vue. ...

  2. 2018-05-09 5分钟入门CTS-尝鲜中文版TypeScript

    知乎原链 本文为中文代码示例之5分钟入门TypeScript的CTS版本. CTS作者是@htwx(github). 它实现了关键词和标准库的所有命名汉化. 本文并未使用附带的vscode相关插件(包 ...

  3. [CSS] Scale on Hover with Transition

    效果 源码 <!doctype html> <html class="outline color"> <head> <meta chars ...

  4. Python运维开发:运算符与数据类型(二)

    python对象的相关术语: python程序中保存的所有数据都是围绕对象这个概念展开的: 程序中存储的所有数据都是对象 每个对象都有一个身份.一个类型和一个值 例如,school='MaGe Lin ...

  5. Git .gitignore文件简介及使用

    Git .gitignore文件简介及使用 By:授客 QQ:1033553122 .gitignore 这个文件的作用就是告诉Git哪些文件不需要添加到版本管理中.实际项目中,很多文件都是不需要版本 ...

  6. Python基于Python实现批量上传文件或目录到不同的Linux服务器

    基于Python实现批量上传文件或目录到不同的Linux服务器   by:授客 QQ:1033553122 实现功能 1 测试环境 1 使用方法 1 1. 编辑配置文件conf/rootpath_fo ...

  7. git 入门教程之里程碑式标签

    "春风得意马蹄疾,一日看尽长安花",对于项目也是如此,最值得期待的恐怕就要数新版本发布的时刻了吧?每当发布新版本时要么是版本号命名(比如v0.0.1)或者代号命名(比如Chelse ...

  8. 2014年5月16至24日,杨学明老师为深圳创维RGB事业部提供两天的《软件测试管理》内训服务!

    2014年5月16日和24日,<在软件开发流程中构筑软件质量—软件测试管理>内训课程在深圳创维集团成功举办!来自创维研发.测试.生产等部门的管理人员和核心骨干等参加了此次培训,此次培训由研 ...

  9. JSON语法与JavaScript语法的区别

    JSON是独立于语言存在的,在不同的编程语言中对这种数据类型的实现不同,例如在JavaScript中使用JavaScript对象对这种数据格式进行实现,那么在java中当然是用java对象实现. 描述 ...

  10. Python自定义异常及抛出异常

    """ 自定义异常 """ class MyException(Exception): # 继承异常类 def __init__(self, ...