文本分类实战(一)—— word2vec预训练词向量
1 大纲概述
文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类。总共有以下系列:
所有代码均在textClassifier仓库中。
2 数据集
数据集为IMDB 电影影评,总共有三个数据文件,在/data/rawData目录下,包括unlabeledTrainData.tsv,labeledTrainData.tsv,testData.tsv。在进行文本分类时需要有标签的数据(labeledTrainData),但是在训练word2vec词向量模型(无监督学习)时可以将无标签的数据一起用上。
3 数据预处理
IMDB 电影影评属于英文文本,本序列主要是文本分类的模型介绍,因此数据预处理比较简单,只去除了各种标点符号,HTML标签,小写化等。代码如下:
import pandas as pd
from bs4 import BeautifulSoup with open("/data4T/share/jiangxinyang848/textClassifier/data/unlabeledTrainData.tsv", "r") as f:
unlabeledTrain = [line.strip().split("\t") for line in f.readlines() if len(line.strip().split("\t")) == 2] with open("/data4T/share/jiangxinyang848/textClassifier/data/labeledTrainData.tsv", "r") as f:
labeledTrain = [line.strip().split("\t") for line in f.readlines() if len(line.strip().split("\t")) == 3] unlabel = pd.DataFrame(unlabeledTrain[1: ], columns=unlabeledTrain[0])
label = pd.DataFrame(labeledTrain[1: ], columns=labeledTrain[0]) def cleanReview(subject):
# 数据处理函数
beau = BeautifulSoup(subject)
newSubject = beau.get_text()
newSubject = newSubject.replace("\\", "").replace("\'", "").replace('/', '').replace('"', '').replace(',', '').replace('.', '').replace('?', '').replace('(', '').replace(')', '')
newSubject = newSubject.strip().split(" ")
newSubject = [word.lower() for word in newSubject]
newSubject = " ".join(newSubject) return newSubject unlabel["review"] = unlabel["review"].apply(cleanReview)
label["review"] = label["review"].apply(cleanReview)
# 将有标签的数据和无标签的数据合并
newDf = pd.concat([unlabel["review"], label["review"]], axis=0)
# 保存成txt文件
newDf.to_csv("/data4T/share/jiangxinyang848/textClassifier/data/preProcess/wordEmbdiing.txt", index=False)
我们使用pandas直接处理数据,建议使用apply方法,处理速度比较快,数据处理完之后将有标签和无标签的数据合并,并保存成txt文件。
4 预训练word2vec模型
关于word2vec模型的介绍见这篇。我们使用gensim中的word2vec API来训练模型。
官方API介绍如下:
class gensim.models.word2vec.Word2Vec(sentences=None, corpus_file=None, size=100, alpha=0.025, window=5, min_count=5, max_vocab_size=None, sample=0.001, seed=1, workers=3, min_alpha=0.0001, sg=0, hs=0, negative=5, ns_exponent=0.75, cbow_mean=1, hashfxn=<built-in function hash>, iter=5, null_word=0, trim_rule=None, sorted_vocab=1, batch_words=10000, compute_loss=False, callbacks=(), max_final_vocab=None)
主要参数介绍如下:
1) sentences:我们要分析的语料,可以是一个列表,或者从文件中遍历读出(word2vec.LineSentence(filename) )。
2) size:词向量的维度,默认值是100。这个维度的取值一般与我们的语料的大小相关,如果是不大的语料,比如小于100M的文本语料,则使用默认值一般就可以了。如果是超大的语料,建议增大维度。
3) window:即词向量上下文最大距离,window越大,则和某一词较远的词也会产生上下文关系。默认值为5,在实际使用中,可以根据实际的需求来动态调整这个window的大小。
如果是小语料则这个值可以设的更小。对于一般的语料这个值推荐在[5;10]之间。
4) sg:即我们的word2vec两个模型的选择了。如果是0, 则是CBOW模型;是1则是Skip-Gram模型;默认是0即CBOW模型。
5) hs:即我们的word2vec两个解法的选择了。如果是0, 则是Negative Sampling;是1的话并且负采样个数negative大于0, 则是Hierarchical Softmax。默认是0即Negative Sampling。
6) negative:即使用Negative Sampling时负采样的个数,默认是5。推荐在[3,10]之间。这个参数在我们的算法原理篇中标记为neg。
7) cbow_mean:仅用于CBOW在做投影的时候,为0,则算法中的xw为上下文的词向量之和,为1则为上下文的词向量的平均值。在我们的原理篇中,是按照词向量的平均值来描述的。个人比较喜欢用平均值来表示xw,默认值也是1,不推荐修改默认值。
8) min_count:需要计算词向量的最小词频。这个值可以去掉一些很生僻的低频词,默认是5。如果是小语料,可以调低这个值。
9) iter:随机梯度下降法中迭代的最大次数,默认是5。对于大语料,可以增大这个值。
10) alpha:在随机梯度下降法中迭代的初始步长。算法原理篇中标记为η,默认是0.025。
11) min_alpha: 由于算法支持在迭代的过程中逐渐减小步长,min_alpha给出了最小的迭代步。
训练模型的代码如下:
import logging
import gensim
from gensim.models import word2vec
# 设置输出日志
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
# 直接用gemsim提供的API去读取txt文件,读取文件的API有LineSentence 和 Text8Corpus, PathLineSentences等。
sentences = word2vec.LineSentence("/data4T/share/jiangxinyang848/textClassifier/data/preProcess/wordEmbdiing.txt")
# 训练模型,词向量的长度设置为200, 迭代次数为8,采用skip-gram模型,模型保存为bin格式
model = gensim.models.Word2Vec(sentences, size=200, sg=1, iter=8)
model.wv.save_word2vec_format("./word2Vec" + ".bin", binary=True)
# 加载bin格式的模型
wordVec = gensim.models.KeyedVectors.load_word2vec_format("word2Vec.bin", binary=True)
文本分类实战(一)—— word2vec预训练词向量的更多相关文章
- word2vec预训练词向量
NLP中的Word2Vec讲解 word2vec是Google开源的一款用于词向量计算 的工具,可以很好的度量词与词之间的相似性: word2vec建模是指用CBoW模型或Skip-gram模型来计算 ...
- tensorflow如何正确加载预训练词向量
使用预训练词向量和随机初始化词向量的差异还是挺大的,现在说一说我使用预训练词向量的流程. 一.构建本语料的词汇表,作为我的基础词汇 二.遍历该词汇表,从预训练词向量中提取出该词对应的词向量 三.初始化 ...
- PyTorch在NLP任务中使用预训练词向量
在使用pytorch或tensorflow等神经网络框架进行nlp任务的处理时,可以通过对应的Embedding层做词向量的处理,更多的时候,使用预训练好的词向量会带来更优的性能.下面分别介绍使用ge ...
- pytorch中如何使用预训练词向量
不涉及具体代码,只是记录一下自己的疑惑. 我们知道对于在pytorch中,我们通过构建一个词向量矩阵对象.这个时候对象矩阵是随机初始化的,然后我们的输入是单词的数值表达,也就是一些索引.那么我们会根据 ...
- 文本分类实战(十)—— BERT 预训练模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(九)—— ELMO 预训练模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(八)—— Transformer模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(七)—— Adversarial LSTM模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(六)—— RCNN模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
随机推荐
- JVM 垃圾回收机制
首先JVM的内存结构包括五大区域: 程序计数器.虚拟机栈.本地方法栈.方法区.堆区.其中程序计数器.虚拟机栈和本地方法栈3个区域随线程启动与销毁, 因此这几个区域的内存分配和回收都具有确定性,不需要过 ...
- Java中重写与重载
重写(覆盖):发生在子类与父类之间:方法名相同方法的个数.类型相同返回值类型小于等于父类的返回值类型 重载:发生在一个类中:方法名相同方法的个数.类型不同返回值类型可以相同也可以不相同
- Tab 菜单切换
<link rel="stylesheet" href="https://blog-static.cnblogs.com/files/hshen/layui.css ...
- Windows上通过bat调用jmx进行循环运行
1.jmx测试脚本中有两个线程组: 1)第一个线程组:模拟60台客户机并发像服务器发送上报请求,需要调用线程组的循环运行 2)第二个线程组:60台客户机上线后,模拟管理平台对客户机进行基础操作,如:创 ...
- WPF:完美自定义MeaagseBox 动画 反弹 背景模糊 扁平化
不知道为什么,WPF的MeaageBox的风格还停留在Win 2000的风格... 很久前就想自己封装一个MessageBox出来,但是都只是简单的封装,不怎么具有通用性.这次终于搞完了. 使用方法和 ...
- Mysql 自定义函数示例
创建定义函数的的基本语法如下 # DELIMITER是用来设置边界符的 DELIMITER // CREATE FUNCTION 函数名(形参列表) RETURNS 返回类型 begin # 函数体 ...
- AS插件-GsonFormat
支持 field 类型的修改. 支持快捷键打开 GsonFormat ,默认为 option+s(mac), alt+s(win) 支持 field 名称的修改. 支持添加 field 前缀. 支持多 ...
- CSS之精灵图(雪碧图)与字体图标
本文内容: 精灵图 字体图标 首发日期:2018-05-01 精灵图: 在以前,每个图片资源都是独立的一张张图片,浏览器访问网站中的不同网页时是重复获取这一张张图片的,这代表需要访问很多次资源. 为了 ...
- Java:注解Annotation(元数据)
本文内容: 注解Annotation的介绍 基本注解的用法 自定义注解 首发日期:2018-07-28 注解Annotation的介绍 Annotation是代码中的特殊标记,能够在编译.类加载.运行 ...
- WordCount作业修改
WordCount作业修改 github地址 需求说明 基本需求 功能说明 PSP 代码实现 字符总数查询 单词数查询 行数查询 总结 一.需求说明 1.基本需求 WordCount的需求可以概括为: ...