POJ 2914 Minimum Cut【最小割 Stoer-Wangner】
题意:求全局最小割
不能用网络流求最小割,枚举举汇点要O(n),最短增广路最大流算法求最大流是O(n2m)复杂度,在复杂网络中O(m)=O(n2),算法总复杂度就是O(n5);就算你用其他求最大流的算法,算法总复杂度也要O(n4)。所以用网络流算法求解最小割集复杂度不会低于O(n4)。所以就要用Stoer_Wagner算法。算法复杂度为O(n3)。如果加堆优化,复杂度会降为O(n2logn)。
Stoer_Wagner算法:
Stoer_Wagner算法是求无向图全局最小割的一个有效算法,最坏时间复杂度O(n3),主要思想是先找任意2点的最小割,然后记录下这个最小割,再合并这2个点。这样经过n−1次寻找任意2点最小割,每次更新全局最小割。最后整张图缩成一个点,算法结束,所保存下来的最小割就是全局最小割。
具体步骤:
如果G的最小割Cut把G分成M,N两个点集,那么枚举的s和t无非以下两种情况:
①:如果s∈M,t∈N则Min-C(s,t) = Cut(最终的最小割)
②:如果s,t∈M(或s,t∈N)则Min-C (s,t) >= Cut(合并s和t后并不影响最小割,所以就把st合并了得到中间结果图G',继续在图G'上求最小割直到命中条件①)
因为利用到了中间结果G',G'<G,所以降低了复杂度。另外,这个合并的思想有点像Prim最小生成树算法,prim维护的dis数组的含义是集合A外的点到到集合树的最短边权,而Stoer−Wagner维护的w数组是集合A外的点,到集合A所有点的边权之和【割集】。
至于②中提到的合并操作,定义为Contract(s,t) := 删掉点 s, t 及边(s, t),加入新节点 c,对于任意 v ∈ 与s,t联通的点集,做一条新的边w(v, c) = w(c, v) = w(s, v) + w(t, v)
. 设最小割cut=INF, 任选一个点s到集合A中, 定义W(A, p)为A中的所有点到A外一点p的权值总和. . 对刚才选定的s, 更新W(A,p)(该值递增). . 选出A外一点p, 且W(A,p)最大的作为新的s, 若A!=|V|, 则继续2. //最大割 4. 把最后进入A的两点记为s和t, 用W(A,t)更新cut. 5. 合并st,即新建顶点u, 边权w(u, v)=w(s, v)+w(t, v), 删除顶点s和t, 以及与它们相连的边 . 若|V|!=1则继续1.
Stoer−Wagner的正确性:
设S和T是图G的2个顶点,图G的全局最小割要么是S−T的最小割,此时S和T在G的全局最小割的2个不同的子集中,要么就是G中将S和T合并得的的新图G′的全局最小割,此时S和T在G的全局最小割的同一子集中。
合并后对边权进行调整对全局最小割没有任何影响。所以只需要不断求出当前图中任意2个点的最小割,然后合并这2个点。不断缩小图的规模求得最小割。
5,6合并成
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; int e[][]; //边权
int w[]; //各点与A集合中所有点的边权之和, w(A,x)=∑w(id[i],x) id[i]∈A
int id[]; //顶点的重新索引,由于合并顶点的需要
bool vis[]; //顶点是否已访问 int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(e,, sizeof(e));
for(int i=;i<n;i++)id[i]=i;//未合并之前,各顶点索引自己
for(int i=;i<m;i++)
{
int u,v,c;
scanf("%d%d%d",&u,&v,&c);
e[u][v]+=c;
e[v][u]+=c;//无向图
} int ans=0x3f3f3f3f;//全局最小割
while(n>)
{
memset(vis,, sizeof(vis));
memset(w,, sizeof(w));
int s,t=;//最后两个顶点
vis[]=;//默认第一个顶点入集合A
for(int i=;i<n;i++)
{
s=t;
t=-;
for(int j=;j<n;j++)
{
if(!vis[j])
{
w[j]+=e[id[j]][id[s]];
if(t==-||w[j]>w[t])t=j;//找最大的割集
}
}
vis[t]=; //加入集合A
}
ans=min(ans,w[t]);
for(int i=;i<n;i++) // 合并s,t为s点
{
if(i==s||i==t)continue;
e[id[i]][id[s]]+=e[id[i]][id[t]];
e[id[s]][id[i]]+=e[id[i]][id[t]]; //边权w(s, v)=w(s, v)+w(t, v)
}
id[t]=id[--n]; // 赋值顶点n-1从而删除t点, 顶点数量-1
}
printf("%d\n",ans);
}
return ;
}
参考自:http://www.hankcs.com,yogykwan和QAQqwe
POJ 2914 Minimum Cut【最小割 Stoer-Wangner】的更多相关文章
- POJ 2914 Minimum Cut 最小割图论
Description Given an undirected graph, in which two vertices can be connected by multiple edges, wha ...
- POJ 2914 Minimum Cut 最小割算法题解
最标准的最小割算法应用题目. 核心思想就是缩边:先缩小最大的边.然后缩小次大的边.依此缩小 基础算法:Prime最小生成树算法 只是本题測试的数据好像怪怪的,相同的算法时间执行会区别非常大,并且一样的 ...
- POJ2914 Minimum Cut —— 最小割
题目链接:http://poj.org/problem?id=2914 Minimum Cut Time Limit: 10000MS Memory Limit: 65536K Total Sub ...
- POJ 2914 Minimum Cut Stoer Wagner 算法 无向图最小割
POJ 2914 题意:给定一个无向图 小于500节点,和边的权值,求最小的代价将图拆为两个联通分量. Stoer Wagner算法: (1)用类似prim算法的方法求"最大生成树" ...
- POJ 2914 Minimum Cut (全局最小割)
[题目链接] http://poj.org/problem?id=2914 [题目大意] 求出一个最小边割集,使得图不连通 [题解] 利用stoerwagner算法直接求出全局最小割,即答案. [代码 ...
- POJ 2914 Minimum Cut 全局最小割
裸的全局最小割了吧 有重边,用邻接矩阵的时候要小心 #include<iostream> #include<cstdio> #include<bitset> #in ...
- POJ 2914 - Minimum Cut - [stoer-wagner算法讲解/模板]
首先是当年stoer和wagner两位大佬发表的关于这个算法的论文:A Simple Min-Cut Algorithm 直接上算法部分: 分割线 begin 在这整篇论文中,我们假设一个普通无向图G ...
- POJ 2914 Minimum Cut
Minimum Cut Time Limit: 10000MS Memory Limit: 65536K Total Submissions: 9319 Accepted: 3910 Case ...
- HDU 6214 Smallest Minimum Cut 最小割,权值编码
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6214 题意:求边数最小的割. 解法: 建边的时候每条边权 w = w * (E + 1) + 1; 这 ...
随机推荐
- 待解决new int(i*j)
这里的确应该用new int [i*j] 来申请一片空间,但new int(i)的含义就像是给p指针指向的内容赋值了,相当于只申请了一个4个字节. 问题是,为什么后面b不能输出结果呢? #includ ...
- HTTP协议07-通用首部字段
通用首部字段 通用首部字段是指,请求报文和响应报文双方都会使用的首部. 1)Cache-Control 通过指定首部字段Cache-Control的指令,就能操作缓存的工作机制. 指令的参数可以多选, ...
- logging模块--日志文件
初级的使用配置模式类似与print 默认打印waring等级及以上--通过更改等级来测试代码 logging.debug("debug no china") #调试模式 loggi ...
- 012_k8s专题系列一之进入容器日常op
一.下面列出如何进入正在运行的k8s容器 <1> kubectl get pods #查看所有正在运行的pod NAME READY STATUS RESTARTS AGE nginx-5 ...
- 使用tomcat发布含有shtml文件的web程序
平常都是使用html或jsp,当导入含有shtml的一个web项目时,向平常一样使用Jetty运行,访问到shtml文件时,直接在浏览器上显示出了源码. 查询,使用tomcat发布,修改tomcat的 ...
- python序列(列表,元组,字典)的常用排序
列表 正向排序 sort() >>> list=[1,6,3,4,5,2] >>> list.sort() >>> list [1, 2, 3, ...
- 如何在eclipse中对项目进行重新编译
有时由于eclipse异常关闭,当我们重启Eclipse,在启动项目时,会报错,说:ClassNotFound类似的错误,引起这种问题的原因可能是由于,Eclipse异常关闭引起的. 解决:在一个项目 ...
- [转]PhpStorm快捷键大全
1 前言 PhPStorm 是 JetBrains 公司开发的一款商业的 PHP 集成开发工具,PhpStorm可随时帮助用户对其编码进行调整,运行单元测试或者提供可视化debug功能.Phpstro ...
- aview安装和使用
一.安装aalibwget https://sourceforge.net/projects/aa-project/files/latest/download?source=files --no-ch ...
- 图片文字css小知识点
行内元素,图片和文字中间有缝隙,需要给父元素设置font-size:0: 图片和文字不对齐,给图片设置vertical-align:top 文字行高有缝隙 设置vertical-align:top