Medium!

题目描述:

给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。

说明:解集不能包含重复的子集。

示例:

输入: nums = [1,2,3]
输出:
[
[3],
  [1],
  [2],
  [1,2,3],
  [1,3],
  [2,3],
  [1,2],
  []
]

解题思路:

这道求子集合的问题,由于其要列出所有结果,按照以往的经验,肯定是要用递归来做。这道题其实它的非递归解法相对来说更简单一点,下面我们先来看非递归的解法,由于题目要求子集合中数字的顺序是非降序排列的,所有我们需要预处理,先给输入数组排序,然后再进一步处理,最开始是想按照子集的长度由少到多全部写出来,比如子集长度为0的就是空集,空集是任何集合的子集,满足条件,直接加入。下面长度为1的子集,直接一个循环加入所有数字,子集长度为2的话可以用两个循环,但是这种想法到后面就行不通了,因为循环的个数不能无限的增长,所以我们必须换一种思路。

我们可以一位一位的往上叠加,比如对于题目中给的例子[1,2,3]来说,最开始是空集,那么我们现在要处理1,就在空集上加1,为[1],现在我们有两个自己[]和[1],下面我们来处理2,我们在之前的子集基础上,每个都加个2,可以分别得到[2],[1, 2],那么现在所有的子集合为[], [1], [2], [1, 2],同理处理3的情况可得[3], [1, 3], [2, 3], [1, 2, 3], 再加上之前的子集就是所有的子集合了。

C++解法一:

 // Non-recursion
class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
vector<vector<int> > res();
sort(S.begin(), S.end());
for (int i = ; i < S.size(); ++i) {
int size = res.size();
for (int j = ; j < size; ++j) {
res.push_back(res[j]);
res.back().push_back(S[i]);
}
}
return res;
}
};

整个添加的顺序为:

[]
[1]
[2]
[1 2]
[3]
[1 3]
[2 3]
[1 2 3]

下面来看递归的解法,相当于一种深度优先搜索,参见http://www.cnblogs.com/TenosDoIt/p/3451902.html,由于原集合每一个数字只有两种状态,要么存在,要么不存在,那么在构造子集时就有选择和不选择两种情况,所以可以构造一棵二叉树,左子树表示选择该层处理的节点,右子树表示不选择,最终的叶节点就是所有子集合,树的结构如下:

[]
/ \
/ \
/ \
[] []
/ \ / \
/ \ / \
[ ] [] [] []
/ \ / \ / \ / \
[ ] [ ] [ ] [] [ ] [] [] []

C++解法二:

 // Recursion
class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
vector<vector<int> > res;
vector<int> out;
sort(S.begin(), S.end());
getSubsets(S, , out, res);
return res;
}
void getSubsets(vector<int> &S, int pos, vector<int> &out, vector<vector<int> > &res) {
res.push_back(out);
for (int i = pos; i < S.size(); ++i) {
out.push_back(S[i]);
getSubsets(S, i + , out, res);
out.pop_back();
}
}
};

整个添加的顺序为:

[]
[1]
[1 2]
[1 2 3]
[1 3]
[2]
[2 3]
[3]

最后我们再来看一种解法,这种解法是CareerCup书上给的一种解法,想法也比较巧妙,把数组中所有的数分配一个状态,true表示这个数在子集中出现,false表示在子集中不出现,那么对于一个长度为n的数组,每个数字都有出现与不出现两种情况,所以共有2n中情况,那么我们把每种情况都转换出来就是子集了,我们还是用题目中的例子, [1 2 3]这个数组共有8个子集,每个子集的序号的二进制表示,把是1的位对应原数组中的数字取出来就是一个子集,八种情况都取出来就是所有的子集了。

C++解法三:

 class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
vector<vector<int> > res;
sort(S.begin(), S.end());
int max = << S.size();
for (int k = ; k < max; ++k) {
vector<int> out = convertIntToSet(S, k);
res.push_back(out);
}
return res;
}
vector<int> convertIntToSet(vector<int> &S, int k) {
vector<int> sub;
int idx = ;
for (int i = k; i > ; i >>= ) {
if ((i & ) == ) {
sub.push_back(S[idx]);
}
++idx;
}
return sub;
}
};

LeetCode(78):子集的更多相关文章

  1. LeetCode 78. 子集(Subsets) 34

    78. 子集 78. Subsets 题目描述 给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明: 解集不能包含重复的子集. 每日一算法2019/6/6Day 34L ...

  2. 每日一题-——LeetCode(78)子集

    给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集).输入: nums = [1,2,3]输出:[ [3],  [1],  [2],  [1,2,3],  [1,3],  [2, ...

  3. Java实现 LeetCode 78 子集

    78. 子集 给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入: nums = [1,2,3] 输出: [ [3], [1], ...

  4. [LeetCode]78. 子集(位运算;回溯法待做)

    题目 给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入: nums = [1,2,3] 输出: [ [3],   [1],   ...

  5. LeetCode 78 - 子集

    给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入: nums = [1,2,3]输出:[ [3], [1], [2], [1, ...

  6. leetcode 78. 子集 JAVA

    题目: 给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入: nums = [1,2,3] 输出: [ [3],   [1], ...

  7. [LeetCode] 78. 子集 ☆☆☆(回溯)

    描述 给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入: nums = [1,2,3]输出:[ [3],  [1],  [2] ...

  8. leetcode 78. 子集(c++)

    给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入: nums = [1,2,3]输出:[ [3],  [1],  [2],  ...

  9. leetcode 78子集

    采用回溯法:对于例子图解执行过程如下,其中向上的分支为向下递归,向下的分支为第二次递归,因此已经push了对应的下标的值,则从根到右边连起来的路径即为组合 由于整个过程类似于二叉树的中序遍历,因此代码 ...

  10. LeetCode 78. 子集 C++(位运算和回溯法)

    位运算 class Solution { public: vector<vector<int>> subsets(vector<int>& nums) { ...

随机推荐

  1. 写自适应的textarea文本域

    <div contenteditable="true"> </div> 我们都知道默认的textarea无法自适应,一般情况下都是内容过多里面通过滚动条来滚 ...

  2. cmd关闭被占用的端口命令及教程详解

    //关闭端口占用命令eg:1. netstat -nao | findstr “8080” 查询8080端口2. taskkill /pid 3017 /F 关闭pid为3017的进程 //详解 ↓但 ...

  3. day 5 - 1 字典(dict)

    dict dict key 必须是不可变数据类型,可哈希value:任意数据类型 dict 优点:使用二分查询来搜索数据存储了大量的关系型数据特点:无序的 数据类型划分:可变数据类型,不可变数据类型不 ...

  4. mysql 开源 ~ canal+otter系列(2)

    一 创建相应用户    源数据用户权限: GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO `retl`@'%';    目的 ...

  5. 【逆向笔记】2017年全国大学生信息安全竞赛 Reverse 填数游戏

    2017年全国大学生信息安全竞赛 Reverse 填数游戏 起因是吾爱破解大手发的解题思路,觉得题挺有意思的,就找来学习学习 这是i春秋的下载链接 http://static2.ichunqiu.co ...

  6. JavaScript编程基础2

    1,数据类型相关操作 使用typeof x函数查看变量的数据类型: typeof "John" // 返回 string typeof 3.14 // 返回 number type ...

  7. OsWatcher 使用详解

    软件下载地址: https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=520996062954556&id=30113 ...

  8. 一言难尽的js变量提升

    基础知识  在这个课题开始之前我们先做一些基础知识的讲解 1.在顶级的区域内声明的变量为 window级别的变量. 也就是说var a=100 等价于 window.a=100; 2.局部的重新声明变 ...

  9. 一个漂亮的php验证码类

    一个漂亮的php验证码类(分享)   作者: 字体:[增加 减小] 类型:转载 下面小编就为大家分享一个漂亮的php验证码类.需要的朋友可以过来参考下   直接上代码: 复制代码 代码如下: //验证 ...

  10. C++怎么实现线程安全

    muduo库学习笔记1-C++多线程系统编程 网上都说这本书很适合初学者入门学习, 我今天开始准备从头再来; 第一章线程安全的对象管理 对象的生与死不能由对象自身拥有的mutex(互斥器)来保护; 如 ...