BZOJ 2839: 集合计数

Description

一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得

它们的交集的元素个数为\(K\),求取法的方案数,答案模\(1000000007\)。

Input

一行两个整数\(N,K\)

Output

一行为答案。

HINK

对于\(100\%\)的数据,\(1≤N≤1000000,0≤K≤N\);


设交集拥有元素集合\(S\)的取法方案数为\(f(S)\),有

\[f(S)=2^{2^{n-|S|}}-1
\]

则答案为

\[\sum_{|T|=k} \sum_{i=k}^n(-1)^{i-k}\sum_{S\supseteq T,|S|=k}f(S)
\]

代入得

\[\binom{n}{k}\sum_{i=k}^n(-1)^{i-k}\binom{n-k}{i-k}(2^{2^{n-i}}-1)
\]

直接预处理一下就可以算了


Code:

#include <cstdio>
const int N=1e6+10;
const int mod=1e9+7;
inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
#define mul(a,b) (1ll*(a)*(b)%mod)
int qp(int d,int k){int f=1;while(k){if(k&1)f=mul(f,d);d=mul(d,d),k>>=1;}return f;}
int inv[N],fac[N],po[N];
int C(int m,int n){return mul(fac[m],mul(inv[m-n],inv[n]));}
int main()
{
int n,k;
scanf("%d%d",&n,&k);
fac[0]=1;for(int i=1;i<=n;i++) fac[i]=mul(fac[i-1],i);
inv[n]=qp(fac[n],mod-2);
for(int i=n-1;~i;i--) inv[i]=mul(inv[i+1],i+1);
po[0]=2;for(int i=1;i<=n;i++) po[i]=mul(po[i-1],po[i-1]);
int ans=0,cur=1;
for(int i=k;i<=n;i++)
{
int yuu=mul(C(n-k,i-k),add(po[n-i],mod-1));
ans=add(ans,cur?yuu:mod-yuu);
cur^=1;
}
ans=mul(ans,C(n,k));
printf("%d\n",ans);
return 0;
}

2019.2.28

BZOJ 2839: 集合计数 解题报告的更多相关文章

  1. BZOJ 2839: 集合计数 [容斥原理 组合]

    2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...

  2. Bzoj 2839 集合计数 题解

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 495  Solved: 271[Submit][Status][Discuss] ...

  3. bzoj 2839 集合计数 容斥\广义容斥

    LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...

  4. ●BZOJ 2839 集合计数

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2839 题解: 容斥原理 真的是神题!!! 定义 f[k] 表示交集大小至少为 k时的方案数怎 ...

  5. [BZOJ 2839]集合计数

    Description 题库链接 有 \(2^n\) 个集合,每个集合只包含 \([1,n]\) ,且这些集合两两不同.问有多少种选择方法(至少选一个),使得这些集合交集大小为 \(k\) . \(0 ...

  6. bzoj 2839 : 集合计数 容斥原理

    因为要在n个里面选k个,所以我们先枚举选的是哪$k$个,方案数为$C_{n}^k$ 确定选哪k个之后就需要算出集合交集正为好这$k$个的方案数,考虑用容斥原理. 我们还剩下$n-k$个元素,交集至少为 ...

  7. bzoj 2839 集合计数——二项式反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( g(i) \) 表示至少有 i 个, \( f(i) \) 表示恰好有 i ...

  8. bzoj 2839 集合计数 —— 二项式反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( f(i) \) 为至少 \( i \) 个选择,则 \( f(i) = C_ ...

  9. bzoj 2839: 集合计数【容斥原理+组合数学】

    首先,考虑容斥,我们所要的答案是并集至少有\( k \)个数的方案数减去并集至少有\( k+1 \)个数的方案数加上并集至少有\( k \)个数的方案数-- 在n个数中选i个的方案数是\( C_{n} ...

随机推荐

  1. 课程存储校对:程序设计思想、源程序代码、运行结果截图,以及开发过程中的项目计划日志、时间记录日志、缺陷记录日志(PSP0级记录)。

    1.程序设计思想 ⑴将JDBC驱动jar包导入到WEB-INF的lib文件夹下 ⑵建立数据库,在数据库中建表,分别将课程名称.任课教师及上课地点录入到列中 ⑶首先写出加载驱动.关闭资源的工具类和异常处 ...

  2. windows 内建环境变量

    PS C:\Windows> ls env: Name Value ---- ----- _NT_SYMBOL_PATH srv*C:\Users\vv\Documents\symbols AL ...

  3. Windows激活

    最近重新安装了一下系统,我的系统是Windows10.这就出现了一个问题,如果是Windows7系统的话,可以使用网上的破解工具进行破解操作,使之成为永久破解版.但是Windows10系统,网上对于它 ...

  4. laravel服务容器

    laravel框架底层解析 本文参考陈昊<Laravel框架关键技术解析>,搭建一个属于自己的简化版服务容器.其中涉及到反射.自动加载,还是需要去了解一下. laravel服务容器 建立项 ...

  5. Linux bc 命令简单学习

    1. bash里面能够实现比较简单的四则运算 echo $((*)) 注意是 双括号+ $ 地址符号. 2. 但是比较复杂的 可能就难以为继了 比如不支持精度 3. 所以这里面需要使用 bc 命令来执 ...

  6. 判断String类型字符串是否为空的方法

    在项目中经常遇到要判断String类型的字段是否为空操作 我们可以用Apache提供的StringUtils这个工具类,不用自己去判断,也不用自己封装判断空的方法 它有两个版本,一个是org.apac ...

  7. Flutter之 LimitedBox、Offstage、OverflowBox、SizedBox详解

    1. LimitedBox A box that limits its size only when it's unconstrained. 1.1 简介 LimitedBox,通过字面意思,也可以猜 ...

  8. 转《在浏览器中使用tensorflow.js进行人脸识别的JavaScript API》

    作者 | Vincent Mühle 编译 | 姗姗 出品 | 人工智能头条(公众号ID:AI_Thinker) [导读]随着深度学习方法的应用,浏览器调用人脸识别技术已经得到了更广泛的应用与提升.在 ...

  9. python之路--subprocess,粘包现象与解决办法,缓冲区

    一. subprocess 的简单用法 import subprocess sub_obj = subprocess.Popen( 'dir', #系统指令 shell=True, #固定方法 std ...

  10. git ignore 忽略 idea文件

    下载了项目组的代码之后发现,一个问题,一编译就生成了很多的 .idea文件夹 还有 target文件夹,这些是不需要提交到git上的, 需要提交的时候屏蔽一下,所以需要建立一个ignore文件列表把他 ...