JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使得人们很容易的进行阅读和编写。同时也方便了机器进行解析和生成。适用于进行数据交互的场景,比如网站前台与后台之间的数据交互。

JSON和XML的比较可谓不相上下。

Python 2.7中自带了JSON模块,直接import json就可以使用了。

官方文档:http://docs.python.org/library/json.html

Json在线解析网站:http://www.json.cn/#

JSON

json简单说就是javascript中的对象和数组,所以这两种结构就是对象和数组两种结构,通过这两种结构可以表示各种复杂的结构

  1. 对象:对象在js中表示为{ }括起来的内容,数据结构为 { key:value, key:value, ... }的键值对的结构,在面向对象的语言中,key为对象的属性,value为对应的属性值,所以很容易理解,取值方法为 对象.key 获取属性值,这个属性值的类型可以是数字、字符串、数组、对象这几种。

  2. 数组:数组在js中是中括号[ ]括起来的内容,数据结构为 ["Python", "javascript", "C++", ...],取值方式和所有语言中一样,使用索引获取,字段值的类型可以是 数字、字符串、数组、对象几种。

import json

json模块提供了四个功能:dumpsdumploadsload,用于字符串 和 python数据类型间进行转换。

1. json.loads()

把Json格式字符串解码转换成Python对象 从json到python的类型转化对照如下:

# json_loads.py
import json
strList = '[1, 2, 3, 4]'
strDict = '{"city": "北京", "name": "大猫"}'
json.loads(strList)
# [1, 2, 3, 4]
json.loads(strDict) # json数据自动按Unicode存储
# {u'city': u'\u5317\u4eac', u'name': u'\u5927\u732b'}

2. json.dumps()

实现python类型转化为json字符串,返回一个str对象 把一个Python对象编码转换成Json字符串

从python原始类型向json类型的转化对照如下:

# json_dumps.py

import json
import chardet listStr = [1, 2, 3, 4]
tupleStr = (1, 2, 3, 4)
dictStr = {"city": "北京", "name": "大猫"} json.dumps(listStr)
# '[1, 2, 3, 4]'
json.dumps(tupleStr)
# '[1, 2, 3, 4]' # 注意:json.dumps() 序列化时默认使用的ascii编码
# 添加参数 ensure_ascii=False 禁用ascii编码,按utf-8编码
# chardet.detect()返回字典, 其中confidence是检测精确度 json.dumps(dictStr)
# '{"city": "\\u5317\\u4eac", "name": "\\u5927\\u5218"}' chardet.detect(json.dumps(dictStr))
# {'confidence': 1.0, 'encoding': 'ascii'} print json.dumps(dictStr, ensure_ascii=False)
# {"city": "北京", "name": "大刘"} chardet.detect(json.dumps(dictStr, ensure_ascii=False))
# {'confidence': 0.99, 'encoding': 'utf-8'}

chardet是一个非常优秀的编码识别模块,可通过pip安装

3. json.dump()

将Python内置类型序列化为json对象后写入文件

# json_dump.py

import json

listStr = [{"city": "北京"}, {"name": "大刘"}]
json.dump(listStr, open("listStr.json","w"), ensure_ascii=False) dictStr = {"city": "北京", "name": "大刘"}
json.dump(dictStr, open("dictStr.json","w"), ensure_ascii=False)

4. json.load()

读取文件中json形式的字符串元素 转化成python类型

# json_load.py

import json

strList = json.load(open("listStr.json"))
print strList # [{u'city': u'\u5317\u4eac'}, {u'name': u'\u5927\u5218'}] strDict = json.load(open("dictStr.json"))
print strDict
# {u'city': u'\u5317\u4eac', u'name': u'\u5927\u5218'}

JsonPath

JsonPath 是一种信息抽取类库,是从JSON文档中抽取指定信息的工具,提供多种语言实现版本,包括:Javascript, Python, PHP 和 Java。

JsonPath 对于 JSON 来说,相当于 XPATH 对于 XML。

下载地址:https://pypi.python.org/pypi/jsonpath

安装方法:点击Download URL链接下载jsonpath,解压之后执行python setup.py install

官方文档:http://goessner.net/articles/JsonPath

JsonPath与XPath语法对比:

Json结构清晰,可读性高,复杂度低,非常容易匹配,下表中对应了XPath的用法。

XPath JSONPath 描述
/ $ 根节点
. @ 现行节点
/ .or[] 取子节点
.. n/a 取父节点,Jsonpath未支持
// .. 就是不管位置,选择所有符合条件的条件
* * 匹配所有元素节点
@ n/a 根据属性访问,Json不支持,因为Json是个Key-value递归结构,不需要。
[] [] 迭代器标示(可以在里边做简单的迭代操作,如数组下标,根据内容选值等)
| [,] 支持迭代器中做多选。
[] ?() 支持过滤操作.
n/a () 支持表达式计算
() n/a 分组,JsonPath不支持

示例:

我们以拉勾网城市JSON文件 http://www.lagou.com/lbs/getAllCitySearchLabels.json 为例,获取所有城市。

# jsonpath_lagou.py

import urllib2
import jsonpath
import json
import chardet url = 'http://www.lagou.com/lbs/getAllCitySearchLabels.json'
request =urllib2.Request(url)
response = urllib2.urlopen(request)
html = response.read() # 把json格式字符串转换成python对象
jsonobj = json.loads(html) # 从根节点开始,匹配name节点
citylist = jsonpath.jsonpath(jsonobj,'$..name') print citylist
print type(citylist)
fp = open('city.json','w') content = json.dumps(citylist, ensure_ascii=False)
print content fp.write(content.encode('utf-8'))
fp.close()

注意事项:

json.loads() 是把 Json格式字符串解码转换成Python对象,如果在json.loads的时候出错,要注意被解码的Json字符的编码。

如果传入的字符串的编码不是UTF-8的话,需要指定字符编码的参数 encoding

dataDict = json.loads(jsonStrGBK);
  • dataJsonStr是JSON字符串,假设其编码本身是非UTF-8的话而是GBK 的,那么上述代码会导致出错,改为对应的:

      dataDict = json.loads(jsonStrGBK, encoding="GBK");
    
  • 如果 dataJsonStr通过encoding指定了合适的编码,但是其中又包含了其他编码的字符,则需要先去将dataJsonStr转换为Unicode,然后再指定编码格式调用json.loads()

``` python

dataJsonStrUni = dataJsonStr.decode("GB2312"); dataDict = json.loads(dataJsonStrUni, encoding="GB2312");

##字符串编码转换

这是中国程序员最苦逼的地方,什么乱码之类的几乎都是由汉字引起的。
其实编码问题很好搞定,只要记住一点: ####任何平台的任何编码 都能和 Unicode 互相转换 UTF-8 与 GBK 互相转换,那就先把UTF-8转换成Unicode,再从Unicode转换成GBK,反之同理。 ``` python
# 这是一个 UTF-8 编码的字符串
utf8Str = "你好地球" # 1. 将 UTF-8 编码的字符串 转换成 Unicode 编码
unicodeStr = utf8Str.decode("UTF-8") # 2. 再将 Unicode 编码格式字符串 转换成 GBK 编码
gbkData = unicodeStr.encode("GBK") # 1. 再将 GBK 编码格式字符串 转化成 Unicode
unicodeStr = gbkData.decode("gbk") # 2. 再将 Unicode 编码格式字符串转换成 UTF-8
utf8Str = unicodeStr.encode("UTF-8")

decode的作用是将其他编码的字符串转换成 Unicode 编码

encode的作用是将 Unicode 编码转换成其他编码的字符串

一句话:UTF-8是对Unicode字符集进行编码的一种编码方式

糗事百科实例:

爬取糗事百科段子,假设页面的URL是 http://www.qiushibaike.com/8hr/page/1

要求:

  1. 使用requests获取页面信息,用XPath / re 做数据提取

  2. 获取每个帖子里的用户头像链接用户姓名段子内容点赞次数评论次数

  3. 保存到 json 文件内

参考代码

#qiushibaike.py

#import urllib
#import re
#import chardet import requests
from lxml import etree page = 1
url = 'http://www.qiushibaike.com/8hr/page/' + str(page)
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36',
'Accept-Language': 'zh-CN,zh;q=0.8'} try:
response = requests.get(url, headers=headers)
resHtml = response.text html = etree.HTML(resHtml)
result = html.xpath('//div[contains(@id,"qiushi_tag")]') for site in result:
item = {} imgUrl = site.xpath('./div/a/img/@src')[0].encode('utf-8')
username = site.xpath('./div/a/@title')[0].encode('utf-8')
#username = site.xpath('.//h2')[0].text
content = site.xpath('.//div[@class="content"]/span')[0].text.strip().encode('utf-8')
# 投票次数
vote = site.xpath('.//i')[0].text
#print site.xpath('.//*[@class="number"]')[0].text
# 评论信息
comments = site.xpath('.//i')[1].text print imgUrl, username, content, vote, comments except Exception, e:
print e

效果

七、数据提取之JSON与JsonPATH的更多相关文章

  1. 爬虫数据提取之JSON与JsonPATH

    数据提取之JSON与JsonPATH JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使得人们很容易的进行阅读和编写.同时也方便了机器进行解析和生成.适 ...

  2. 数据提取之JSON与JsonPATH

    数据提取之JSON与JsonPATH JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使得人们很容易的进行阅读和编写.同时也方便了机器进行解析和生成.适 ...

  3. python 数据提取之JSON与JsonPATH

    JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使得人们很容易的进行阅读和编写.同时也方便了机器进行解析和生成.适用于进行数据交互的场景,比如网站前台与 ...

  4. 9.json和jsonpath

    数据提取之JSON与JsonPATH JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使得人们很容易的进行阅读和编写.同时也方便了机器进行解析和生成.适 ...

  5. 【python接口自动化】- 使用json及jsonpath转换和提取数据

    前言 ​ JSON(JavaScript Object Notation)是一种轻量级的数据交换格式.它可以让人们很容易的进行阅读和编写,同时也方便了机器进行解析和生成,适用于进行数据交互的场景,比如 ...

  6. jmeter之断言、数据提取器(正则表达式、jsonpath、beanshell)、聚合报告、参数化

    ctx - ( JMeterContext) - gives access to the context vars - ( JMeterVariables) - gives read/write ac ...

  7. 数据提取--JSON

    什么是数据提取? 简单的来说,数据提取就是从响应中获取我们想要的数据的过程 非结构化的数据:html等 结构化数据:json,xml等 处理方法:正则表达式.xpath 处理方法:转化为python数 ...

  8. JSON数据提取

    JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使得人们很容易的进行阅读和编写.同时也方便了机器进行解析和生成.JSON在数据交换中起到了一个载体的作用 ...

  9. 爬虫之re数据提取的使用

    本文将业务场景中最常用的几点实例,给大家列举出来,不常见的不再一一赘述.  使用urllib库可以模拟浏览器发送请求获得服务器返回的数据,下一步就是把有用的数据提取出来.数据分为两种形式:结构化和非结 ...

随机推荐

  1. 中间人攻击,HTTPS也可以被碾压

    摘要: 当年12306竟然要自己安装证书... 原文:知道所有道理,真的可以为所欲为 公众号:可乐 Fundebug经授权转载,版权归原作者所有. 一.什么是MITM 中间人攻击(man-in-the ...

  2. AcWing 44. 分行从上往下打印二叉树

    地址 https://www.acwing.com/problem/content/description/42/ 题目描述从上到下按层打印二叉树,同一层的结点按从左到右的顺序打印,每一层打印到一行. ...

  3. C++ 拷贝构造函数 copy ctor & 拷贝赋值函数 copy op=

    类中含有  指针类型  的成员变量时,就必须要定义 copy ctor 和 copy op= copy ctor 请见: class Rectangle { public: Rectangle(Rec ...

  4. JDBC数据库连接(二)

    要想在编程语言中操作数据库,就必须与数据库建立连接. 建立JDBC连接的步骤如下: 导入JDBC包:使用Java语言的import语句在Java代码开头位置导入所需的类. 注册JDBC驱动程序:使JV ...

  5. commons-httpclient 和 httpclient 区别

    今天在看项目的pom的时候,发现里面有这么两个包依赖. <dependency> <groupId>commons-httpclient</groupId> < ...

  6. 站点部署,IIS配置优化指南[转]

    站点部署,IIS配置优化指南 目录 一.       设置应用程序池默认设置 二.       常规设置 三.       优化回收策略 四.       性能 五.       IIS初始化(预加载 ...

  7. 2019 SDN上机第5次作业

    2019 SDN上机第5次作业 1.浏览RYU官网学习RYU控制器的安装和RYU开发入门教程,提交你对于教程代码的理解,包括但不限于: 描述官方教程实现了一个什么样的交换机功能? 答:官方教程实现了一 ...

  8. 【洛谷5298】[PKUWC2018] Minimax(树形DP+线段树合并)

    点此看题面 大致题意: 有一棵树,给出每个叶节点的点权(互不相同),非叶节点\(x\)至多有两个子节点,且其点权有\(p_x\)的概率是子节点点权较大值,有\(1-p_x\)的概率是子节点点权较小值. ...

  9. Zookeeper分布式锁实战

    场景描述: 在线程高并发场景下,生成唯一的订单编号,如: 2017-10-14-20-52-33-01 年-月-日-时-分-秒-序号 (1)Lock锁接口 package com.zookeeper. ...

  10. Fuzzy finder(fzf+vim) 使用入门指南

    今天无意中尝试了fzf,才发现这个工具的威力无穷,毕竟是非常好的工具,第一次都把它的优点都释放出来也不现实,先熟悉一下吧,后面在实战中再不断地学习总结. 它是什么: Fuzzy finder 是一款使 ...