准备数据

  1. 点击下载猫狗声音数据集至本地;

  2. 解压,文件包结构大概如下图所示

data
├── test
│ ├── cats
│ │ ├── cat_20.wav
│ │ ├── ......
│ │ └── cat_29.wav
│ └── dogs
│ ├── dog_20.wav
│ ├── ......
│ └── dog_29.wav
└── train
├── cats
│ ├── cat_0.wav
│ ├── ......
│ └── cat_19.wav
└── dogs
├── dog_0.wav
├── ......
└── dog_19.wav

创建项目

  1. 登录ModelArts管理控制台,点击左侧导航栏的自动学习,进入自动学习页面;

  2. 点击右侧项目页面中的声音分类的创建项目按钮;

3. 在创建自动学习项目页面,计费模式默认“按需计费”,填写“名称”并选择“训练数据”的存储路径

在obs路径选择页面上,选择你的obs,在你想要保存数据的路径上新建文件夹,输入名称后,点击确定新建文件夹,然后在训练数据页面点击确定以新建的空文件夹作为你的训练数据源;

4. 点击右下角创建项目

数据标注

  1. 在数据标注页面上,点击添加音频

2. 先添加data/train/cats下的数据,点击确定,可以看到界面已经显示音频数据

3. 可以点击音频左侧的播放按钮试听

4. 点击选择音频进行标注,一次可以多选,在这里我们勾选选择当前页直接选取当前页面的所有音频;

5. 右侧输入cat标签,并点击确定

6. 在已标注标签页上可以看到已标注的数据,并可以进行标签更改

7. 同样的方式添加data/train/dogs下的音频并标注为dog

模型训练

  1. 页面右下角点击开始训练,进入模型训练页面

2. 大概2-3分钟后训练结束,可以在右侧查看训练结果

部署上线

  1. 点击部署,等待约5分钟左右,部署成功

2. 页面中间是服务测试,点击上传,选择data/test目录下的猫狗音频,然后点击预测,在页面的右侧可以查看预测结果

3. 可以进行多次预测,查看预测结果

4. 结束前,点击版本管理的停止按钮,已避免产生不必要的费用

流程到此为止了,如果你觉得老山的文章不错,不妨点击关注。

作者:山找海味

使用ModelArts自动学习完成猫狗声音分类的更多相关文章

  1. 使用VGG16完成猫狗分类

    from keras.applications.vgg16 import VGG16 from keras.models import Sequential from keras.layers imp ...

  2. 学习完Spring MVC体会

    学习完spring mvc感觉很不错,万事开头难,付出定有回报,坚持必将成功

  3. 机器学习框架ML.NET学习笔记【9】自动学习

    一.概述 本篇我们首先通过回归算法实现一个葡萄酒品质预测的程序,然后通过AutoML的方法再重新实现,通过对比两种实现方式来学习AutoML的应用. 首先数据集来自于竞赛网站kaggle.com的UC ...

  4. 实践案例丨基于ModelArts AI市场算法MobileNet_v2实现花卉分类

    概述 MobileNetsV2是基于一个流线型的架构,它使用深度可分离的卷积来构建轻量级的深层神经网,此模型基于 MobileNetV2: Inverted Residuals and Linear ...

  5. JAVA学习路线图---(JAVA1234) 分类: B1_JAVA 2013-10-05 10:22 502人阅读 评论(1) 收藏

    转自:http://blog.csdn.net/pplcheer/article/details/12276999 第一阶段-Java基础        这一阶段很重要,关系到你后面阶段的学习,所以务 ...

  6. 深度学习之 cnn 进行 CIFAR10 分类

    深度学习之 cnn 进行 CIFAR10 分类 import torchvision as tv import torchvision.transforms as transforms from to ...

  7. Pytorch学习--编程实战:猫和狗二分类

    Pytorch学习系列(一)至(四)均摘自<深度学习框架PyTorch入门与实践>陈云 目录: 1.程序的主要功能 2.文件组织架构 3. 关于`__init__.py` 4.数据处理 5 ...

  8. 学习完nio的一个小笔记吧

    这是一个nio网络通信服务端的demo,主要就学习了selector的一些用法,以及它里面的事件类型 selector是对nio的一个优化,它能保证既能高效处理线程中的事件,又能保证线程不会一直占用c ...

  9. CefSharp的简单应用,制作自动学习视频软件(基于Chromium)

    CefSharp在NuGet的简介是“The CefSharp Chromium-based browser component”,机翻的意思就是“基于Cefsharp Chromium的浏览器组件” ...

随机推荐

  1. 20190725 NOIP模拟8

    今天起来就是虚的一批,然后7.15开始考试,整个前半个小时异常的困,然后一看题,T1一眼就看出了是KMP,但是完了,自己KMP的打法忘的一干二净,然后开始打T2,T2肝了一个tarjan点双就扔上去了 ...

  2. 「牛客练习赛53A」超越学姐爱字符串

    更好的阅读体验 Portal Portal1: Nowcoder Description 超越学姐非常喜欢自己的名字,以至于英文字母她只喜欢\(\textrm{"c"}\)和\(\ ...

  3. C++中对C的扩展学习新增语法——引用

    引用 引用的好处: 1.引用的好处 C++使用结构体,不需要再使用 typedef. 2.值传递是将实参进行拷贝,赋值给形参,如果对象比较大,每次拷贝效率比较低,并且函数内部无法修改外部变量的值,能力 ...

  4. PHP 性能优化 - php.ini 配置

    内存 默认设置 memory_limit = 128M 单个进程可使用的内存最大值,这个值的设定可以从以下几点考虑: 应用的类型.如果是内存集中型应用,可增加该值: 单个 PHP 进程平均消耗的内存, ...

  5. VS 使用 :新建项目

    1.文件位置不放C盘

  6. requests保存图片

    1.创建07_save_jpg.py文件 import requests #发送请求respone = requests.get("https://www.baidu.com/img/bd_ ...

  7. SpringBoot 正式环境必不可少的外部化配置

    前言 <[源码解析]凭什么?spring boot 一个 jar 就能开发 web 项目> 中有读者反应: 部署后运维很不方便,比较修改一个 IP 配置,需要重新打包. 这一点我是深有体会 ...

  8. W5500设计方案

    W5500是韩国一款集成全硬件 TCP/IP 协议栈的嵌入式以太网控制器,W5500同时也是一颗工业级以太网控制芯片,最近发现我们国内也有和W5500 芯片一样芯片 介绍给大家 如下图:

  9. 在WebView中加载HTML页面时显示进度对话框的方法

    webView.setWebViewClient(new WebViewClient(){            ProgressDialog prDialog;            @Overri ...

  10. Java的Arrays类 基本用法

    初识Java的Arrays类 Arrays类包括很多用于操作数组的静态方法(例如排序和搜索),且静态方法可以通过类名Arrays直接调用.用之前需要导入Arrays类: import java.uti ...