B-Quadratic equation_2019牛客暑期多校训练营(第九场)

题意
解下列方程
\((x+y) \equiv b \ mod \ p\)
\((x\ *\ y) \equiv c \ mod \ p\)
题解
\(y = b-x\) 带入二式
\(x * (b-x) \equiv c \ mod \ p\)
\(bx - x^2 =c + kp\)
\(x^2 - bx + c + kp = 0\)
解得\(x = \frac{b \ \pm \ \sqrt{b^2 - 4c+kp} }{2}\)
要使\(x\)为整数则\(\sqrt{b^2 - 4c+kp}\)要为整数
令\(z = \sqrt{b^2 - 4c+kp}\)
\(z^2 = b^2 - 4c+kp\)
\(z^2 \equiv \ b^2 - 4c \ mod \ p\)
问题就变成了二次剩余
先判断是否有解也就是\(b^2-4c\)是否是\(p\)的二次剩余
利用欧拉准则:当且仅当\(d^{\frac{p-1}{2}} \equiv 1 \ mod \ p\),\(d\)为\(p\)的二次剩余
当且仅当\(d^{\frac{p-1}{2}} \equiv -1 \ mod \ p\),\(d\)为\(p\)的非二次剩余
接下来套二次剩余板子求\(z\)即可,有一种特殊情况当\(p \ \% \ 4 = 3\)时可以用公式\(z = d^{\frac{p+1}{4}} \% \ p\)快速求解
现在\(x = \frac{b + z}{2}, y = \frac{b - z}{2}\),可能不是整数,我们对x和y都乘上一个偶数(p+1)就可以保证x,y是整数且仍然满足题目的两个方程,因为
\((x+y)*(p+1) \ \%\ p =(x+y) \% p\ *\ (p+1) \% p = b*1 = b\)
\(x*(p+1)*y*(p+1)\%p = (x*y)\%p\ *\ (p^2+2p+1)\%p = c*1 = c\)
*顺带扒了一下咖啡鸡的板子
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod = 1e9+7;
ll pow_mod(ll a, ll b) {
ll ans = 1;
while (b > 0) {
if (b & 1) ans = ans * a % mod;
a = a * a % mod;
b /= 2;
}
return ans;
}
int main() {
int T;
scanf("%d", &T);
while (T--) {
ll b, c;
scanf("%lld%lld", &b, &c);
ll t = ((b*b - 4*c) % mod + mod) % mod;
if (pow_mod(t, (mod-1)/2) == mod-1) puts("-1 -1");
else {
ll z = pow_mod(t, (mod+1)/4);
ll x = ((b + z) % mod + mod) % mod;
ll y = ((b - z) % mod + mod) % mod;
x = x * (mod+1) / 2 % mod;
y = y * (mod+1) / 2 % mod;
if (x > y) swap(x, y);
printf("%lld %lld\n", x, y);
}
}
return 0;
}
二次剩余模板
//调用solve(d, p)返回x
mt19937_64 gen(time(0));
struct T{ll x,y;};
ll w;
T mul_two(T a,T b,ll p){
T ans;
ans.x=(a.x*b.x%p+a.y*b.y%p*w%p)%p;
ans.y=(a.x*b.y%p+a.y*b.x%p)%p;
return ans;
}
T qpow_two(T a,ll n,ll p){
T ans;
ans.x=1;
ans.y=0;
while(n){
if(n&1) ans=mul_two(ans,a,p);
n>>=1;
a=mul_two(a,a,p);
}
return ans;
}
ll qpow(ll a,ll n,ll p){
ll ans=1;
a%=p;
while(n){
if(n&1) ans=ans*a%p;
n>>=1;
a=a*a%p;
}
return ans%p;
}
ll Legendre(ll a,ll p){
return qpow(a,(p-1)>>1,p);
}
int solve(ll n,ll p){
if (n==0) return 0;
if (n==1) return 1;
if(Legendre(n,p)+1==p) return -1;
ll a,t;
while(1){
a=gen()%p;
t=a*a-n;
w=(t%p+p)%p;
if(Legendre(w,p)+1==p) break;
}
T tmp;
tmp.x=a;
tmp.y=1;
T ans=qpow_two(tmp,(p+1)>>1,p);
return ans.x;
}
B-Quadratic equation_2019牛客暑期多校训练营(第九场)的更多相关文章
- 2019牛客暑期多校训练营(第九场) D Knapsack Cryptosystem
题目 题意: 给你n(最大36)个数,让你从这n个数里面找出来一些数,使这些数的和等于s(题目输入),用到的数输出1,没有用到的数输出0 例如:3 4 2 3 4 输出:0 0 1 题解: 认真想一 ...
- 2019牛客暑期多校训练营(第二场) H-Second Large Rectangle(单调栈)
题意:给出由01组成的矩阵,求求全是1的次大子矩阵. 思路: 单调栈 全是1的最大子矩阵的变形,不能直接把所有的面积存起来然后排序取第二大的,因为次大子矩阵可能在最大子矩阵里面,比如: 1 0 0 1 ...
- 2020牛客暑期多校训练营 第二场 K Keyboard Free 积分 期望 数学
LINK:Keyboard Free 我要是会正经的做法 就有鬼了. 我的数学水平没那么高. 三个同心圆 三个动点 求围成三角形面积的期望. 不会告辞. 其实可以\(n^2\)枚举角度然后算出面积 近 ...
- 2020牛客暑期多校训练营 第二场 J Just Shuffle 置换 群论
LINK:Just Shuffle 比较怂群论 因为没怎么学过 置换也是刚理解. 这道题是 已知一个置换\(A\)求一个置换P 两个置换的关键为\(P^k=A\) 且k是一个大质数. 做法是李指导教我 ...
- 2020牛客暑期多校训练营 第二场 I Interval 最大流 最小割 平面图对偶图转最短路
LINK:Interval 赛时连题目都没看. 观察n的范围不大不小 而且建图明显 考虑跑最大流最小割. 图有点稠密dinic不太行. 一个常见的trick就是对偶图转最短路. 建图有点复杂 不过建完 ...
- 2020牛客暑期多校训练营 第二场 C Cover the Tree 构造 贪心
LINK:Cover the Tree 最受挫的是这道题,以为很简单 当时什么都想不清楚. 先胡了一个树的直径乱搞的贪心 一直过不去.后来意识到这类似于最经典长链剖分优化贪心的做法 然后那个是求最大值 ...
- 2020牛客暑期多校训练营 第二场 B Boundary 计算几何 圆 已知三点求圆心
LINK:Boundary 计算几何确实是弱项 因为好多东西都不太会求 没有到很精通的地步. 做法很多,先说官方题解 其实就是枚举一个点 P 然后可以发现 再枚举一个点 然后再判断有多少个点在圆上显然 ...
- 2020牛客暑期多校训练营 第二场 A All with Pairs 字符串hash KMP
LINK:All with Pairs 那天下午打这个东西的时候状态极差 推这个东西都推了1个多小时 (比赛是中午考试的我很困 没睡觉直接开肝果然不爽 一开始看错匹配的位置了 以为是\(1-l\)和\ ...
- 2019牛客暑期多校训练营(第五场)G - subsequeue 1 (一题我真的不会的题)
layout: post title: 2019牛客暑期多校训练营(第五场)G - subsequeue 1 (一题我真的不会的题) author: "luowentaoaa" c ...
随机推荐
- Gridea+GitHub搭建个人博客
某日闲余时间看到一篇介绍Gridea博客平台的文章,大概看了一下觉得此平台还不错,随即自己进入Gridea官网瞅了瞅.哇,这搭建过程也太简单了吧,比Hexo博客搭建要容易很多,而且还有后台管理客户端, ...
- Linux常用的命令及使用方法
1.请用命令查出ifconfig命令程序的绝对路径 [root@localhost ~]# which ifconfig(ifconfig是linux中用于显示或配置网络设备(网络接口卡)的命令) / ...
- Dubbo里面线程池的拒绝策略
Dubbo里面线程池的拒绝策略 public class AbortPolicyWithReport extends ThreadPoolExecutor.AbortPolicy { protecte ...
- 1、JAVA的小白之路
大学的时光过得很快,转眼我已经大二了,在大一时,学习了C\C++,对于语言有一定基础,在未来的道路上,我需要攒足干劲,积累足够的知识和技能,去走上社会. 我的第一任大学班主任告诉我:“作为程序员,你至 ...
- 消息中间件和JMS介绍(一)
在一个公司创立初期,他可能只有几个应用,系统之间的关联也不是那么大,A系统调用B系统就直接调用B提供的API接口:后来这个公司做大了,他一步步发展有了几十个系统,这时候A系统要调用B系统的接口,但是B ...
- Vue项目中使用better-scroll
当 better-scroll 遇见 Vue 在我们日常的移动端项目开发中,处理滚动列表是再常见不过的需求了. 以滴滴为例,可以是这样竖向滚动的列表,如图所示: 也可以是横向滚动的导航栏,如图所示 ...
- 多态、继承、this、super
先放一下多态的定义: (360词典上的哈) 多态(Polymorphism)按字面的意思就是"多种状态".在面向对象语言中,接口的多种不同的实现方式即为多态.引用Charlie C ...
- 如何使用dmidecode命令查看硬件信息
引言 当我们需要获取机器硬件信息时,可使用linux系统自带的dmidecode工具进行查询. dmidecode命令通过读取系统DMI表,显示服务器硬件和BIOS信息.除了可使用dmidecode查 ...
- net core Webapi基础工程搭建(四)——日志功能log4net
目录 前言 log4net 依然是,NuGet引用第三方类库 整合LogUtil 小结 前言 一个完整的项目工程离不开日志文件的记录,而记录文件的方法也有很多,可以自己通过Stream去实现文件的读写 ...
- npm钉钉脚手架,支持考勤信息获取
钉钉官方并未提供nodejs包,第一次调用接口的时候非常费事,而且尝试去寻找相关的钉钉考勤数据模块的时候只找到了一些消息啊,只能办公啊,免登啊之类的模块,有关考勤数据的似乎没有 关于dd的npm包中一 ...