java高并发系列 - 第3天:有关并行的两个重要定律
有关为什么要使用并行程序的问题前面已经进行了简单的探讨。总的来说,最重要的应该是处于两个目的。
第一,为了获得更好的性能;
第二,由于业务模型的需要,确实需要多个执行实体。
在这里,我将更加关注第一种情况,也就是有关性能的问题。将串行程序改造为并发程序,一般来说可以提高程序的整体性能,但是究竟能提高多少,甚至说究竟是否真的可以提高,还是一个需要研究的问题。目前,主要有两个定律对这个问题进行解答,一个是Amdahl定律,另外一个是Gustafson定律。
Amdahl(阿姆达尔)定律
Amdahl定律是计算机科学中非常重要的定律。它定义了串行系统并行化后的加速比的计算公式和理论上线。
加速比定义:加速比 = 优化前系统耗时 / 优化后系统耗时
所谓加速比就是优化前耗时与优化后耗时的比值。加速比越高,表明优化效果越明显。图1.8显示了Amdahl公式的推到过程,其中n表示处理器个数,T表示时间,T1表示优化前耗时(也就是只有1个处理器时的耗时),Tn表示使用n个处理器优化后的耗时。F是程序中只能串行执行的比例。

根据这个公式,如果CPU处理器数量趋于无穷,那么加速比与系统的串行化比例成反比,如果系统中必须有50%的代码串行执行,那么系统的最大加速比为2。
假设有一个程序分为以下步骤执行,每个执行步骤花费100个单位时间。其中,只有步骤2和步骤5可以并行,步骤1、3、4必须串行,如图1.9所示。在全串行的情况下,系统合计耗时为500个单位时间。

若步骤2和步骤5并行化,假设在双核处理器上,则有如图1.10所示的处理流程。在这种情况下,步骤2和步骤5的耗时将为50个单位时间。故系统整体耗时为400个单位时间。根据加速比的定义有:
加速比 = 优化前系统耗时 / 优化后系统耗时 = 500/400 = 1.25

由于5个步骤中,3个步骤必须串行,因此其串行化比例为3/5=0.6,即 F = 0.6,且双核处理器的处理器个数N为2。代入加速比公式得:
加速比 = 1/(0.6+(1-0.6)/2)=1.25
在极端情况下,假设并行处理器个数为无穷大,则有如图1.11所示的处理过程。步骤2和步骤5的处理时间趋于0。即使这样,系统整体耗时依然大于300个单位时间。使用加速比计算公式,N趋于无穷大,有加速比 = 1/F,且F=0.6,故有加速比=1.67。即加速比的极限为500/300=1.67。
由此可见,为了提高系统的速度,仅增加CPU处理的数量并不一定能起到有效的作用。需要从根本上修改程序的串行行为,提高系统内可并行化的模块比重,在此基础上,合理增加并行处理器数量,才能以最小的投入,得到最大的加速比。

注意:根据Amdahl定律,使用多核CPU对系统进行优化,优化的效果取决于CPU的数量,以及系统中串行化程序的比例。CPU数量越多,串行化比例越低,则优化效果越好。仅提高CPU数量而不降低程序的串行化比例,也无法提高系统的性能。
阿姆达尔定律图示
为了更好地理解阿姆达尔定律,我会尝试演示这个定定律是如何诞生的。
首先,一个程序可以被分割为两部分,一部分为不可并行部分B,一部分为可并行部分1 – B。如下图:

在顶部被带有分割线的那条直线代表总时间 T(1)。
下面你可以看到在并行因子为2的情况下的执行时间:

并行因子为3的情况:

举个例子
一个业务会串行调用2个方法,m1,m2,m1耗时100ms,m2耗时400ms,m2内部串行执行了4个无依赖的任务,每个任务100ms,如下图:

m2内部的4个任务无依赖的,即可以并行进行处理,4个任务同时并行,当cpu数量大于等于4的时候,可以让4个任务同时进行,此时m2耗时最小,即100ms,cpu为2个的时候,同时只能够执行2个任务,其他2个任务处于等待cpu分配时间片状态,此时m2耗时200ms;当cpu超过4个的时候,或者趋于无限大的时候,m2耗时还是100ms,此时cpu数量再怎么增加对性能也没有提升了,此时需要提升的是任务可以并行的数量。
从阿姆达尔定律可以看出,程序的可并行化部分可以通过使用更多的硬件(更多的线程或CPU)运行更快。对于不可并行化的部分,只能通过优化代码来达到提速的目的。因此,你可以通过优化不可并行化部分来提高你的程序的运行速度和并行能力。你可以对不可并行化在算法上做一点改动,如果有可能,你也可以把一些移到可并行化放的部分。
Gustafson定律
Gustafson定律也试图说明处理器个数、串行化比例和加速比之间的关系,如图1.12所示,但是Gustafson定律和Amdahl定律的角度不同。同样,加速比都被定义为优化前的系统耗时除以优化后的系统耗时。

根据Gustafson定律,我们可以更容易地发现,如果串行化比例很小,并行化比例很大,那么加速比就是处理器的个数。只要不断地累加处理器,就能获得更快的速度。
Amdahl定律和Gustafson定律结论有所不同,并不是说其中有个是错误的,只是二者从不同的角度去看待问题的结果,他们的侧重点有所不同。
Amdahl强调:当串行换比例一定时,加速比是有上限的,不管你堆叠多少个CPU参与计算,都不能突破这个上限。
Gustafson定律关系的是:如果可被并行化的代码所占比例足够大,那么加速比就能随着CPU的数量线性增长。
总的来说,提升性能的方法:想办法提升系统并行的比例,同时增加CPU数量。
java高并发系列
- java高并发系列 - 第1天:必须知道的几个概念
- java高并发系列 - 第2天:并发级别
- java高并发系列 - 第3天:有关并行的两个重要定律
- java高并发系列 - 第4天:JMM相关的一些概念
- java高并发系列 - 第5天:深入理解进程和线程
- java高并发系列 - 第6天:线程的基本操作
- java高并发系列 - 第7天:volatile与Java内存模型
- java高并发系列 - 第8天:线程组
- java高并发系列 - 第9天:用户线程和守护线程
- java高并发系列 - 第10天:线程安全和synchronized关键字
- java高并发系列 - 第11天:线程中断的几种方式
- java高并发系列 - 第12天JUC:ReentrantLock重入锁
java高并发系列连载中,总计估计会有四五十篇文章,可以关注公众号:javacode2018,获取最新文章。

java高并发系列交流群

java高并发系列 - 第3天:有关并行的两个重要定律的更多相关文章
- java高并发系列-第1天:必须知道的几个概念
java高并发系列-第1天:必须知道的几个概念 同步(Synchronous)和异步(Asynchronous) 同步和异步通常来形容一次方法调用,同步方法调用一旦开始,调用者必须等到方法调用返回后, ...
- java高并发系列 - 第6天:线程的基本操作
新建线程 新建线程很简单.只需要使用new关键字创建一个线程对象,然后调用它的start()启动线程即可. Thread thread1 = new Thread1(); t1.start(); 那么 ...
- java高并发系列 - 第12天JUC:ReentrantLock重入锁
java高并发系列 - 第12天JUC:ReentrantLock重入锁 本篇文章开始将juc中常用的一些类,估计会有十来篇. synchronized的局限性 synchronized是java内置 ...
- java高并发系列 - 第14天:JUC中的LockSupport工具类,必备技能
这是java高并发系列第14篇文章. 本文主要内容: 讲解3种让线程等待和唤醒的方法,每种方法配合具体的示例 介绍LockSupport主要用法 对比3种方式,了解他们之间的区别 LockSuppor ...
- java高并发系列 - 第15天:JUC中的Semaphore,最简单的限流工具类,必备技能
这是java高并发系列第15篇文章 Semaphore(信号量)为多线程协作提供了更为强大的控制方法,前面的文章中我们学了synchronized和重入锁ReentrantLock,这2种锁一次都只能 ...
- java高并发系列 - 第16天:JUC中等待多线程完成的工具类CountDownLatch,必备技能
这是java高并发系列第16篇文章. 本篇内容 介绍CountDownLatch及使用场景 提供几个示例介绍CountDownLatch的使用 手写一个并行处理任务的工具类 假如有这样一个需求,当我们 ...
- java高并发系列 - 第17天:JUC中的循环栅栏CyclicBarrier常见的6种使用场景及代码示例
这是java高并发系列第17篇. 本文主要内容: 介绍CyclicBarrier 6个示例介绍CyclicBarrier的使用 对比CyclicBarrier和CountDownLatch Cycli ...
- java高并发系列 - 第21天:java中的CAS操作,java并发的基石
这是java高并发系列第21篇文章. 本文主要内容 从网站计数器实现中一步步引出CAS操作 介绍java中的CAS及CAS可能存在的问题 悲观锁和乐观锁的一些介绍及数据库乐观锁的一个常见示例 使用ja ...
- java高并发系列 - 第22天:java中底层工具类Unsafe,高手必须要了解
这是java高并发系列第22篇文章,文章基于jdk1.8环境. 本文主要内容 基本介绍. 通过反射获取Unsafe实例 Unsafe中的CAS操作 Unsafe中原子操作相关方法介绍 Unsafe中线 ...
随机推荐
- ubuntu vscode 写一个C++程序
博客转载:https://blog.csdn.net/weixin_43374723/article/details/84064644 Visual studio code是微软发布的一个运行于 Ma ...
- 如何封装$on,$emit,$off——学vue前你必须懂得封装!
let evevtListenr = {} 封装$on const $on = (eventName,cb)=>{ if(!evevtListenr[eventName]){ ...
- Python深拷贝与浅拷贝区别
可变类型 如list.dict等类型,改变容器内的值,容器地址不变. 不可变类型 如元组.字符串,原则上不可改变值.如果要改变对象的值,是将对象指向的地址改变了 浅拷贝 对于可变对象来说,开辟新的内存 ...
- SpringCloud中Feign的适配器的实现方案
前言 最近在做微服务的项目,各个系统之间需要进行调用,然后用一个适配器来实现服务之间的feign调用,使用适配器进行统一管理. 实现方案 首先我们需要将服务的名称进行单独的配置,可以方便的进行切换和扩 ...
- Java 的 IO 流
接着上一篇的 “Java 的 File 类” 的随笔,在File类的基础上,我们就走进Java的IO流吧. 流的概念和作用 流是一组有顺序的,有起点和终点的字节集合,是对数据传输的总称或抽象.即数据在 ...
- HTML5中像网页中保存cookie的实现
if(window.plus)//判断当前的设备是手机 window.localStorage.setItem("key","value");//设置值 win ...
- Python—图形界面开发
https://blog.csdn.net/kun_dl/category_7418837.html https://www.runoob.com/python/python-gui-tkinter. ...
- Linux下的 mariadb 使用 root 用户启动方式
近日因测试安全产品需要,想调整mariadb的启动用户为root, 经历一番波折后终于成功! 注意:以root身份启动mysql是一项非常危险行为,相当于给了数据库操作用户(数据库管理员或黑客)一个通 ...
- CodeForces - 1243D (思维+并查集)
题意 https://vjudge.net/problem/CodeForces-1243D 有一张完全图,n个节点 有m条边的边权为1,其余的都为0 这m条边会给你 问你这张图的最小生成树的权值 思 ...
- 【机器学习之数学】03 有约束的非线性优化问题——拉格朗日乘子法、KKT条件、投影法
目录 1 将有约束问题转化为无约束问题 1.1 拉格朗日法 1.1.1 KKT条件 1.1.2 拉格朗日法更新方程 1.1.3 凸优化问题下的拉格朗日法 1.2 罚函数法 2 对梯度算法进行修改,使其 ...