http服务源码分析
多读go的源码,可以加深对go语言的理解和认知,今天分享一下http相关的源码部分
在不使用第三方库的情况下,我们可以很容易的的用go实现一个http服务,
package main
import (
"fmt"
"net/http"
)
func IndexHandler(w http.ResponseWriter, r *http.Request) {
fmt.Fprintln(w, "hello world ! ")
}
func main() {
http.HandleFunc("/", IndexHandler)
if err := http.ListenAndServe(":9100", nil); err != nil {
panic(err)
}
}
直接在浏览器里访问9100端口就可以返回 hello world !
go已经把所有的细节封装好了,我们只需要自己去写Handler实现就够了。源码简单来说做了以下几件事:
- 把我们自定义的Handler方法添加到默认路由
DefaultServeMux的Map里比如:http.HandleFunc("/", IndexHandler)(btw: go语言的map是非线程安全的,可以在http源码里看到官方的处理方式); - 启动一个tcp服务监听9100端口,等待http调用;
- 当监听到有http调用时,启动一个协程来处理这个请求,这个是go的http服务快的一个重要原因,把请求内容转换成http.Request, 把当前连接封装http.RespnseWriter;
- 默认路由
DefaultServeMux根据request的path找到相应的Handler,把 request和 responseWriter传给Handler 进行业务逻辑处理,response响应信息write给客户端;
ServeMux & Handler
http 包的默认路由 DefaultServeMux 是 ServeMux 结构休的实例
http.HandleFunc("/", IndexHandler) 的调用,会把path信息和自定义的方法信息保存到 DefaultServeMux 的 m map[string]muxEntry变量里
我们看一下ServeMux 的定义:
type ServeMux struct {
mu sync.RWMutex
m map[string]muxEntry
es []muxEntry // slice of entries sorted from longest to shortest.
hosts bool // whether any patterns contain hostnames
}
type muxEntry struct {
h Handler
pattern string
}
ServeMux 中保存了path和Handler 的对应关系,也是路由关系。
Handler
muxEntry 中的 h Handler 对就的就是我们自定义的Handler方法比如,我们自己例子中的方法 func IndexHandler(w http.ResponseWriter, r *http.Request) 细心的同学可能会问 Handler是一个接口,但是我们只是定义了一个方法,这是怎么转换的呢?
接口Halder设置了签名规则,也就是我们自定义的处理方法
type Handler interface {
ServeHTTP(ResponseWriter, *Request)
}
go语言中所有的自定义类型都可以实现自己的方法,http包是用一个自定义的func来去实现了Handler接口,
type HandlerFunc func(ResponseWriter, *Request)
// ServeHTTP calls f(w, r).
func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
f(w, r)
}
然后在ServerMux的方法HandleFunc处理的时候会把 handler func(ResponseWriter, *Request) 转换成 HandlerFunc, 如下所示:
// HandleFunc registers the handler function for the given pattern.
func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
if handler == nil {
panic("http: nil handler")
}
mux.Handle(pattern, HandlerFunc(handler))
}
ServerMux 结构中还有一个读写锁 mu sync.RWMutex mu就是用来处理多线程下map的安全访问的。
查找&调用 Handler
得到自定义的handler方法,就是去map中根据path匹配得到Handler
func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
mux.mu.RLock()
defer mux.mu.RUnlock()
// Host-specific pattern takes precedence over generic ones
if mux.hosts {
h, pattern = mux.match(host + path)
}
if h == nil {
h, pattern = mux.match(path)
}
if h == nil {
h, pattern = NotFoundHandler(), ""
}
return
}
func (mux *ServeMux) match(path string) (h Handler, pattern string) {
// Check for exact match first.
v, ok := mux.m[path]
if ok {
return v.h, v.pattern
}
// Check for longest valid match. mux.es contains all patterns
// that end in / sorted from longest to shortest.
for _, e := range mux.es {
if strings.HasPrefix(path, e.pattern) {
return e.h, e.pattern
}
}
return nil, ""
}
ServeMux 实现了 Handler 接口,也是默认的路由调用的具体规则实现的地方,他的 ServeHTTP 方法处理方式就是得到自定义的handler方法,并调用我们自定义的方法:
func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
if r.RequestURI == "*" {
if r.ProtoAtLeast(1, 1) {
w.Header().Set("Connection", "close")
}
w.WriteHeader(StatusBadRequest)
return
}
h, _ := mux.Handler(r)
h.ServeHTTP(w, r)
}
接口Halder设置了签名规则,也就是我们自定义的处理方法
比如下面的代码,函数IndexHandler就是我们自定义的方法,返回给客户端请求一个 hello world ! 字符串。中间请求是如何调用到我们自定义的方法的具体逻辑都是http包提供的,但是一点也不神秘,
http.HandleFunc("/", IndexHandler)
// IndexHandler 我们自己定义的Handler方法
func IndexHandler(w http.ResponseWriter, r *http.Request) {
fmt.Fprintln(w, "hello world ! ")
}
type Handler interface {
ServeHTTP(ResponseWriter, *Request)
}
//
type HandlerFunc func(ResponseWriter, *Request)
// ServeHTTP calls f(w, r).
func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
f(w, r)
}
http ListenAndServe
说完 ServeMux 是如何结合 Handler 接口,来实现路由和调用后,就要说一下,http服务是如何得到客户端传入的信息,封装requet和rresponse的。
在启动程序的时候http.ListenAndServe, 有两个参数,第一个是指写端口号,第二个是处理逻辑,如果我们没有给定处理逻辑,会使用默认的处理DefaultServeMux
func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
handler := sh.srv.Handler
if handler == nil {
handler = DefaultServeMux
}
if req.RequestURI == "*" && req.Method == "OPTIONS" {
handler = globalOptionsHandler{}
}
handler.ServeHTTP(rw, req)
}
ListenAndServe 方法打开tcp端口进行监听,然后把Listener 传给srv.Serve方法
func (srv *Server) ListenAndServe() error {
// 省略部分代码 ...
ln, err := net.Listen("tcp", addr)
if err != nil {
return err
}
return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})
}
具体要说一下 Service 方法,这个方法中,对监听tcp请求,然后把请求的客户端连接进行封装,
func (srv *Server) Serve(l net.Listener) error {
// 省略部分代码 ...
ctx := context.WithValue(baseCtx, ServerContextKey, srv)
for {
rw, e := l.Accept()
// 省略部分代码 ...
tempDelay = 0
c := srv.newConn(rw)
c.setState(c.rwc, StateNew) // before Serve can return
go c.serve(ctx)
}
}
把客户端的请求封装成一个Conn,然后启动一个协程go c.serve(ctx)来处理这个连接请求,这就是http包快的一个重要原因,每一个连接就是一个协程。客户端可以先和服务器进行连接,然后利用这个conn来多次发送http请求,这样,就可以减少每次的进行连接而提高一些速度。像一些rpc里就是利用这点去实现的双向的stream流,比如我之前的帖子go微服务框架go-micro深度学习(五) stream 调用过程详解,他就是建立一个tcp连接,然后基于这个conn,发送多个request,返回多次respose数据。
// Serve a new connection.
func (c *conn) serve(ctx context.Context) {
c.remoteAddr = c.rwc.RemoteAddr().String()
ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr())
// 省略部分代码 ...
// 循环读取请求 ...
for {
// 读取请求数据,封装response
w, err := c.readRequest(ctx)
if c.r.remain != c.server.initialReadLimitSize() {
// If we read any bytes off the wire, we're active.
c.setState(c.rwc, StateActive)
}
// 省略部分代码 ...
// 路由调用自定义的方法,把封装好的responseWrite和 request传到方法内
serverHandler{c.server}.ServeHTTP(w, w.req)
w.cancelCtx()
if c.hijacked() {
return
}
w.finishRequest()
// 省略部分代码 ...
}
}
http服务源码分析的更多相关文章
- zookeeper源码分析之五服务端(集群leader)处理请求流程
leader的实现类为LeaderZooKeeperServer,它间接继承自标准ZookeeperServer.它规定了请求到达leader时需要经历的路径: PrepRequestProcesso ...
- zookeeper源码分析之四服务端(单机)处理请求流程
上文: zookeeper源码分析之一服务端启动过程 中,我们介绍了zookeeper服务器的启动过程,其中单机是ZookeeperServer启动,集群使用QuorumPeer启动,那么这次我们分析 ...
- angular源码分析:$compile服务——directive他妈
一.directive的注册 1.我们知道,我们可以通过类似下面的代码定义一个指令(directive). var myModule = angular.module(...); myModule.d ...
- dubbo源码分析2-reference bean发起服务方法调用
dubbo源码分析1-reference bean创建 dubbo源码分析2-reference bean发起服务方法调用 dubbo源码分析3-service bean的创建与发布 dubbo源码分 ...
- Fresco 源码分析(三) Fresco服务端处理(1) ImagePipeline为何物
4.3 服务端的处理 备注: 因为是分析,而不是设计,所以很多知识我们类似于插叙的方式叙述,就是用到了哪个知识点,我们再提及相关的知识点,如果分析到了最后,我想想是不是应该将这个架构按照设计的方式,重 ...
- Fresco 源码分析(二) Fresco客户端与服务端交互(3) 前后台打通
4.2.1.2.4 PipelineDraweeControllerBuilder.obtainController()源码分析 续 上节中我们提到两个核心的步骤 obtainDataSourceSu ...
- Fresco 源码分析(二) Fresco客户端与服务端交互(1) 解决遗留的Q1问题
4.2 Fresco客户端与服务端的交互(一) 解决Q1问题 从这篇博客开始,我们开始讨论客户端与服务端是如何交互的,这个交互的入口,我们从Q1问题入手(博客按照这样的问题入手,是因为当时我也是从这里 ...
- dubbo注册服务IP解析异常及IP解析源码分析
在使用dubbo注册服务时会遇到IP解析错误导致无法正常访问. 比如: 本机设置的IP为172.16.11.111, 但实际解析出来的是180.20.174.11 这样就导致这个Service永远也无 ...
- 【Netty源码分析】客户端connect服务端过程
上一篇博客[Netty源码分析]Netty服务端bind端口过程 我们介绍了服务端绑定端口的过程,这一篇博客我们介绍一下客户端连接服务端的过程. ChannelFuture future = boos ...
随机推荐
- 批量修改含空格的文件名「Linux」
1.问题:文件批量重命名和处理文件名中的空格 如果文件名中有空格,在执行以下shell脚本的时候会出错. shell 脚本 for filename in `ls` do echo $filename ...
- Windows下使用virtualenv创建虚拟环境
操作系统 : windowns10_x64Python版本:3.6.8virtualenv版本:16.7.7virtualenvwrapper版本:1.2.5 方式一:直接使用virtualenv 1 ...
- Swoole Redis 连接池的实现
概述 这是关于 Swoole 入门学习的第九篇文章:Swoole Redis 连接池的实现. 第八篇:Swoole MySQL 连接池的实现 第七篇:Swoole RPC 的实现 第六篇:Swoole ...
- PHP程序执行的过程原理
为了以后能开发PHP扩展,就一定要了解PHP的执行顺序.这篇文章就是为C开发PHP扩展做铺垫. Web环境我们假设为Apache.在编译PHP的时候,为了能够让Apache支持PHP,我们会生成一个m ...
- Java描述设计模式(10):组合模式
本文源码:GitHub·点这里 || GitEE·点这里 一.生活场景 1.文件系统 下图是常见的计算机文件系统的一部分. 文件系统是一个树结构,树上长有节点.树的节点有两种: 树枝节点 即文件夹,有 ...
- 【NOI 2011】阿狸的打字机
Problem Description 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有 \(28\) 个按键,分别印有 \(26\) 个小写英文字母和 B . P 两个字母. ...
- 墙上你APP设计与实现
墙上你APP,听名字你们就应该可以想到是一个类似于表白墙吧,其实在做这个项目的时候我就是看到我们学校有一个专门工程墙,但是你找它发布消息表白或者找寻自己在学校掉了的饭卡或者身份证的时候,需要等它们同意 ...
- python跳出多重循环的方法
方法1:自定义异常 # -*- coding:utf-8 -*- """ 功能:python跳出循环 """ # 方法1:自定义异常 cla ...
- Abp小知识-如何全局设置DontWrapResult属性
demo地址 GitHub相关demo地址:https://github.com/PuzzledAlien/DotNetCore_Practice/tree/master/ABP.Demo/WebAp ...
- Cesium专栏-样条插值(平滑路径、飞行动画,源码下载)
Cesium Cesium 是一款面向三维地球和地图的,世界级的JavaScript开源产品.它提供了基于JavaScript语言的开发包,方便用户快速搭建一款零插件的虚拟地球Web应用,并在性能,精 ...