本文摘自于《Spring Cloud微服务 入门 实战与进阶》一书。

1 配置发布后的实时推送设计

配置中心最重要的一个特性就是实时推送了,正因为有这个特性,我们可以依赖配置中心做很多事情。在我自己开发的Smconf这个配置中心,Smconf是依赖于Zookeeper的Watch机制来实现实时推送。

上图简要描述了配置发布的大致过程:

  • 用户在Portal中进行配置的编辑和发布
  • Portal会调用Admin Service提供的接口进行发布操作
  • Admin Service收到请求后,发送ReleaseMessage给各个Config Service,通知Config Service配置发生变化
  • Config Service收到ReleaseMessage后,通知对应的客户端,基于Http长连接实现

2 发送ReleaseMessage的实现方式

ReleaseMessage消息是通过Mysql实现了一个简单的消息队列。之所有没有采用消息中间件,是为了让Apollo在部署的时候尽量简单,尽可能减少外部依赖。

上图简要描述了发送ReleaseMessage的大致过程:

  • Admin Service在配置发布后会往ReleaseMessage表插入一条消息记录
  • Config Service会启动一个线程定时扫描ReleaseMessage表,去查看是否有新的消息记录
  • Config Service发现有新的消息记录,那么就会通知到所有的消息监听器
  • 消息监听器得到配置发布的信息后,则会通知对应的客户端

3 Config Service通知客户端的实现方式

通知是采用基于Http长连接实现,主要分为下面几个步骤:

  • 客户端会发起一个Http请求到Config Service的notifications/v2接口
  • v2接口通过Spring DeferredResult把请求挂起,不会立即返回
  • 如果在60秒内没有该客户端关心的配置发布,那么会返回Http状态码304给客户端
  • 如果发现配置有修改,则会调用DeferredResult的setResult方法,传入有配置变化的namespace信息,同时该请求会立即返回
  • 客户端从返回的结果中获取到配置变化的namespace后,会立即请求Config Service获取该namespace的最新配置

4 源码解析实时推送设计

Apollo推送这块代码比较多,就不在本书中详细分析了,我把推送这块的代码稍微简化了下,给大家进行讲解,这样理解起来会更容易。当然我这边会比较简单,很多细节就不做考虑了,只是为了能够让大家明白Apollo推送的核心原理。

发送ReleaseMessage的逻辑我们就写一个简单的接口,用队列存储,测试的时候就调用这个接口模拟配置有更新,发送ReleaseMessage消息。

@RestController
public class NotificationControllerV2 implements ReleaseMessageListener { // 模拟配置更新,往里插入数据表示有更新
public static Queue<String> queue = new LinkedBlockingDeque<>(); @GetMapping("/addMsg")
public String addMsg() {
queue.add("xxx");
return "success";
} }

消息发送之后,前面我们有讲过Config Service会启动一个线程定时扫描ReleaseMessage表,去查看是否有新的消息记录,然后取通知客户端,这边我们也启动一个线程去扫描:

@Component
public class ReleaseMessageScanner implements InitializingBean { @Autowired
private NotificationControllerV2 configController; @Override
public void afterPropertiesSet() throws Exception {
// 定时任务从数据库扫描有没有新的配置发布
new Thread(() -> {
for (;;) {
String result = NotificationControllerV2.queue.poll();
if (result != null) {
ReleaseMessage message = new ReleaseMessage();
message.setMessage(result);
configController.handleMessage(message);
}
}
}).start();;
} }

循环去读取NotificationControllerV2中的队列,如果有消息的话就构造一个ReleaseMessage的对象,然后调用NotificationControllerV2中的handleMessage()方法进行消息的处理。

ReleaseMessage就一个字段,模拟消息内容:

public class ReleaseMessage {
private String message; public void setMessage(String message) {
this.message = message;
}
public String getMessage() {
return message;
}
}

接下来,我们看handleMessage做了什么样的工作

NotificationControllerV2实现了ReleaseMessageListener接口,ReleaseMessageListener中定义了handleMessage()方法。

public interface ReleaseMessageListener {
void handleMessage(ReleaseMessage message);
}

handleMessage就是当配置发生变化的时候,通知的消息监听器,消息监听器得到配置发布的信息后,则会通知对应的客户端:

@RestController
public class NotificationControllerV2 implements ReleaseMessageListener { private final Multimap<String, DeferredResultWrapper> deferredResults = Multimaps
.synchronizedSetMultimap(HashMultimap.create()); @Override
public void handleMessage(ReleaseMessage message) {
System.err.println("handleMessage:"+ message);
List<DeferredResultWrapper> results = Lists.newArrayList(deferredResults.get("xxxx"));
for (DeferredResultWrapper deferredResultWrapper : results) {
List<ApolloConfigNotification> list = new ArrayList<>();
list.add(new ApolloConfigNotification("application", 1));
deferredResultWrapper.setResult(list);
}
} }

Apollo的实时推送是基于Spring DeferredResult实现的,在handleMessage()方法中可以看到是通过deferredResults获取DeferredResult,deferredResults就是第一行的Multimap,Key其实就是消息内容,Value就是DeferredResult的业务包装类DeferredResultWrapper,我们来看下DeferredResultWrapper的代码:

public class DeferredResultWrapper {
private static final long TIMEOUT = 60 * 1000;// 60 seconds private static final ResponseEntity<List<ApolloConfigNotification>> NOT_MODIFIED_RESPONSE_LIST =
new ResponseEntity<>(HttpStatus.NOT_MODIFIED); private DeferredResult<ResponseEntity<List<ApolloConfigNotification>>> result; public DeferredResultWrapper() {
result = new DeferredResult<>(TIMEOUT, NOT_MODIFIED_RESPONSE_LIST);
} public void onTimeout(Runnable timeoutCallback) {
result.onTimeout(timeoutCallback);
} public void onCompletion(Runnable completionCallback) {
result.onCompletion(completionCallback);
} public void setResult(ApolloConfigNotification notification) {
setResult(Lists.newArrayList(notification));
} public void setResult(List<ApolloConfigNotification> notifications) {
result.setResult(new ResponseEntity<>(notifications, HttpStatus.OK));
} public DeferredResult<ResponseEntity<List<ApolloConfigNotification>>> getResult() {
return result;
}
}

通过setResult()方法设置返回结果给客户端,以上就是当配置发生变化,然后通过消息监听器通知客户端的原理,那么客户端是在什么时候接入的呢?

@RestController
public class NotificationControllerV2 implements ReleaseMessageListener { // 模拟配置更新,往里插入数据表示有更新
public static Queue<String> queue = new LinkedBlockingDeque<>(); private final Multimap<String, DeferredResultWrapper> deferredResults = Multimaps
.synchronizedSetMultimap(HashMultimap.create()); @GetMapping("/getConfig")
public DeferredResult<ResponseEntity<List<ApolloConfigNotification>>> getConfig() {
DeferredResultWrapper deferredResultWrapper = new DeferredResultWrapper();
List<ApolloConfigNotification> newNotifications = getApolloConfigNotifications();
if (!CollectionUtils.isEmpty(newNotifications)) {
deferredResultWrapper.setResult(newNotifications);
} else {
deferredResultWrapper.onTimeout(() -> {
System.err.println("onTimeout");
}); deferredResultWrapper.onCompletion(() -> {
System.err.println("onCompletion");
});
deferredResults.put("xxxx", deferredResultWrapper);
}
return deferredResultWrapper.getResult();
} private List<ApolloConfigNotification> getApolloConfigNotifications() {
List<ApolloConfigNotification> list = new ArrayList<>();
String result = queue.poll();
if (result != null) {
list.add(new ApolloConfigNotification("application", 1));
}
return list;
}
}

NotificationControllerV2中提供了一个/getConfig的接口,客户端在启动的时候会调用这个接口,这个时候会执行getApolloConfigNotifications()方法去获取有没有配置的变更信息,如果有的话证明配置修改过,直接就通过deferredResultWrapper.setResult(newNotifications);返回结果给客户端了,客户端收到结果后重新拉取配置的信息进行覆盖本地的配置。

如果getApolloConfigNotifications()方法没有返回配置修改的信息,证明配置没有发生修改,就将DeferredResultWrapper对象添加到deferredResults中,等待后续配置发生变化时消息监听器进行通知。

同时这个请求就会挂起,不会立即返回,挂起是通过DeferredResultWrapper中的下面的代码实现的:

private static final long TIMEOUT = 60 * 1000;// 60 seconds

private static final ResponseEntity<List<ApolloConfigNotification>> NOT_MODIFIED_RESPONSE_LIST =
new ResponseEntity<>(HttpStatus.NOT_MODIFIED); private DeferredResult<ResponseEntity<List<ApolloConfigNotification>>> result; public DeferredResultWrapper() {
result = new DeferredResult<>(TIMEOUT, NOT_MODIFIED_RESPONSE_LIST);
}

在创建DeferredResult对象的时候指定了超时的时间和超时后返回的响应码,如果60秒内没有消息监听器进行通知,那么这个请求就会超时,超时后客户端就收到的响应码就是304。

整个Config Service的流程就走完了,接下来我们看客户端是怎么实现的,我们简单的写个测试类模拟客户端注册:

public class ClientTest {
public static void main(String[] args) {
reg();
} private static void reg() {
System.err.println("注册");
String result = request("http://localhost:8081/getConfig");
if (result != null) {
// 配置有更新,重新拉取配置
// ......
}
// 重新注册
reg();
} private static String request(String url) {
HttpURLConnection connection = null;
BufferedReader reader = null;
try {
URL getUrl = new URL(url);
connection = (HttpURLConnection) getUrl.openConnection();
connection.setReadTimeout(90000);
connection.setConnectTimeout(3000);
connection.setRequestMethod("GET");
connection.setRequestProperty("Accept-Charset", "utf-8");
connection.setRequestProperty("Content-Type", "application/json");
connection.setRequestProperty("Charset", "UTF-8");
System.out.println(connection.getResponseCode());
if (200 == connection.getResponseCode()) {
reader = new BufferedReader(new InputStreamReader(connection.getInputStream(), "UTF-8"));
StringBuilder result = new StringBuilder();
String line = null;
while ((line = reader.readLine()) != null) {
result.append(line);
}
System.out.println("结果 " + result);
return result.toString();
}
} catch (IOException e) {
e.printStackTrace();
} finally {
if (connection != null) {
connection.disconnect();
}
}
return null;
}
}

首先启动/getConfig接口所在的服务,然后启动客户端,客户端就会发起注册请求,如果有修改直接获取到结果,进行配置的更新操作。如果无修改,请求会挂起,这边客户端设置的读取超时时间是90秒,大于服务端的60秒超时时间。

每次收到结果后,无论是有修改还是没修改,都必须重新进行注册,通过这样的方式就可以达到配置实时推送的效果。

我们可以调用之前写的/addMsg接口来模拟配置发生变化,调用之后客户端就能马上得到返回结果。

本文摘自于《Spring Cloud微服务 入门 实战与进阶》一书。

去年出版的《Spring Cloud微服务:全栈技术与案例解析》一书,得到了大家的支持以及反馈,基于大家的反馈,重新进行了更正和改进。

基于比较稳定的 Spring Cloud Finchley.SR2 版本和 Spring Boot 2.0.6.RELEASE 版本编写。

同时将示列代码进行标准的归档,之前的都在一起,不方便读者参考和运行。

同时还增加了像Apollo,Spring Cloud Gateway,生产实践经验等新的内容。

Apollo服务端设计原理剖析的更多相关文章

  1. TYPESDK手游聚合SDK服务端设计思路与架构之一:应用场景分析

    TYPESDK 服务端设计思路与架构之一:应用场景分析 作为一个渠道SDK统一接入框架,TYPESDK从一开始,所面对的需求场景就是多款游戏,通过一个统一的SDK服务端,能够同时接入几十个甚至几百个各 ...

  2. TYPESDK手游聚合SDK服务端设计思路与架构之二:服务端设计

    在前一篇文中,我们对一个聚合SDK服务端所需要实现的功能作了简单的分析.通过两个主要场景的功能流程图,我们可以看到,作为多款游戏要适配多个渠道的统一请求转发中心,TYPESDK服务端主要需要实现的功能 ...

  3. TYPESDK手游聚合SDK服务端设计思路与架构之四:流程优化之信息安全与订单校验

    有了前文几个步骤的分析和设计,TYPESDK的信息交互流程已经可以正常工作了,但是,这个流程还没有考虑到支付这样的过程中,至关重要的信息安全问题. 在整个交互过程中,游戏服务端,SDK服务端,渠道服务 ...

  4. TYPESDK手游聚合SDK服务端设计思路与架构之三:流程优化之订单保存与通知

    经过前两篇文字的分析与设计,我们已经可以搭建出一个能够支持多游戏多渠道的聚合SDK服务端,但这只是理想化状态下的一个简化模型.如果接入渠道的逻辑都是按照理想化的简化过程来构建,那么对于支付的请求,我们 ...

  5. 移动APP服务端设计开发注意要点

    2014年,移动APP的热度丝毫没有减退,怎么为您的移动端app设计良好的服务器端接口(API)呢? 下面谈谈我个人的一些想法. 2014年,移动APP的热度丝毫没有减退,并没有像桌面软件被WEB网站 ...

  6. cas sso单点登录系列2:cas客户端和cas服务端交互原理动画图解,cas协议终极分析

    转:http://blog.csdn.net/ae6623/article/details/8848107 1)PPT流程图:ppt下载:http://pan.baidu.com/s/1o7KIlom ...

  7. SSO单点登录系列2:cas客户端和cas服务端交互原理动画图解,cas协议终极分析

    落雨 cas 单点登录 一.用户第一次访问web1应用. ps:上图少画了一条线,那一条线,应该再返回来一条,然后再到server端,画少了一步...谢谢提醒.而且,重定向肯定是从浏览器过去的.我写的 ...

  8. nextjs服务端渲染原理

    1. 简单的介绍一下 nextjs是react进行服务端渲染的一个工具,默认以根目录下的pages为渲染路由 比如我在pages目录下创建一个index.js文件,然后export default一个 ...

  9. 携程开源分布式配置系统Apollo服务端是如何实时更新配置的?

    引言 前面有写过一篇<分布式配置中心apollo是如何实时感知配置被修改>,也就是客户端client是如何知道配置被修改了,有不少读者私信我你既然说了client端是如何感知的,那服务端又 ...

随机推荐

  1. Burp Suite渗透操作指南 【暴力破解】

    1.1 Intruder高效暴力破解 其实更喜欢称Intruder爆破为Fuzzing.Intruder支持多种爆破模式.分别是:单一字典爆破.多字段相同字典爆破.多字典意义对应爆破.聚合式爆破.最常 ...

  2. Test Case:: 12C ASMCMD New feature (Doc ID 1589249.1)

    Test Case:: 12C ASMCMD New feature (Doc ID 1589249.1) APPLIES TO: Oracle Database - Enterprise Editi ...

  3. python(二) jupyter 快捷键

    jupyter notebook 中的快捷键介绍 当你熟练使用notebooks的基本功能后,掌握他的快捷键是十分必要的,这样可以大大提高你的工作效率.下面是一些比较常用的快捷键: 编辑模式:点击单元 ...

  4. 基于django的个人博客网站建立(四)

    基于django的个人博客网站建立(四) 前言 网站效果可点击这里访问 今天主要添加了留言与评论在后台的管理和主页文章的分页显示,文章类别的具体展示以及之前预留链接的补充 主要内容 其实今天的内容和前 ...

  5. 31(2).密度聚类---Mean-Shift算法

    Mean-Shift 是基于核密度估计的爬山算法,可以用于聚类.图像分割.跟踪等领域.

  6. 解决安装tensorflow-gpu失败:Command "python setup.py egg_info"failed with error code 10 in.....

    按照https://blog.csdn.net/shawroad88/article/details/82222811前几步安装. 又有新的报错如下: 再运行运行代码安装setuptools pip ...

  7. (day69)axios、配置ElementUI、配置jQuery和Bootstrap、Django中的CORS问题

    目录 一.Vue的ajax插件:axios 二.Django中的CORS跨域问题 (一)同源策略 (二)解决方式(cors模块) 三.Vue配置ElementUI 四.Vue配置jQuery和Boot ...

  8. 真正的RISC-V开发板——VEGA织女星开发板开箱评测

    前言 由于最近ARM公司要求员工"停止所有与华为及其子公司正在生效的合约.支持及未决约定",即暂停与华为的相关合作,大家纷纷把注意力投向了另一个的处理器架构RISC-V,它是基于精 ...

  9. ETCD:系统限制

    原文地址:System limits 请求大小限制 etcd被设计用来处理小键值对典型的如元数据.较大的请求数据也起作用,但可能会增加其他请求的延迟.默认情况下,任意的请求最大的空间为1.5MiB,这 ...

  10. SpringBoot(十二):SpringBoot整合Mybatis-Plus

    本节版本虽然只用到了基本特性,但可以满足大部分的增删改查. 一.环境准备SpringBoot 1.5.10.RELEASEMybatis-Plus 2.1.9Mybatis-Plus 官方地址:htt ...