问题描述

LG5337

BZOJ5508


题解

设\(opt_{i,j}(i \in [1,n],j \in [1,26])\)代表区间\([1,i]\),结尾为\(j\)的写法。

设\(exist_{i,j}(i,j \in [1,26])\)代表\((i,j)\)能否前后相邻,如果为\(1\),则不能。

则有

\[opt_{i,j}=\sum_{k=1}^{26} opt_{i-1,k}(exist_{k,j}=0)
\]

发现\(n \le 10^{15}\),就这样递推肯定不行,所以矩阵优化

矩阵\(base\)为\(26 \times 26\)的,\(base_{i,j}=1-exist_{i,j}\)


\(\mathrm{Code}\)

#include<bits/stdc++.h>
using namespace std; #define int long long template <typename Tp>
void read(Tp &x){
x=0;char ch=1;int fh;
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-'){
fh=-1;ch=getchar();
}
else fh=1;
while(ch>='0'&&ch<='9'){
x=(x<<1)+(x<<3)+ch-'0';
ch=getchar();
}
x*=fh;
} const int mod=1000000007LL; char s[100007];
int len,n;
int exist[27][27]; int chk(char c){
return c-'a'+1;
} struct Mat{
int a[27][27],n;
Mat(){
n=26;memset(a,0,sizeof(a));
}
}base,ans; Mat Mul(Mat a,Mat b){
int q=a.n;
Mat ret;
for(int i=1;i<=q;i++){
for(int j=1;j<=q;j++){
for(int k=1;k<=q;k++){
ret.a[i][j]=(ret.a[i][j]+a.a[i][k]*b.a[k][j]%mod)%mod;
}
}
}
return ret;
} Mat ksm(Mat x,int p){
Mat ret;
for(int i=1;i<=26;i++) ret.a[i][i]=1;
while(p){
if(p&1) ret=Mul(ret,x);p>>=1;
x=Mul(x,x);
}
return ret;
} int sum; signed main(){
ios::sync_with_stdio(false);
cin>>n>>(s+1);
if(n==1){
puts("1");return 0;
}
len=strlen(s+1);
for(int i=2;i<=len;i++){
int xx=chk(s[i]),yy=chk(s[i-1]);
exist[yy][xx]=1;
}
for(int i=1;i<=26;i++){
ans.a[1][i]=1;
for(int j=1;j<=26;j++){
if(!exist[i][j]) base.a[i][j]=1;
}
}
ans=Mul(ans,ksm(base,n-1));
for(int i=1;i<=26;i++){
sum=(sum+ans.a[1][i])%mod;
}
cout<<sum<<endl;
return 0;
}

LG5337/BZOJ5508 「TJOI2019」甲苯先生的字符串 线性动态规划+矩阵加速的更多相关文章

  1. LOJ#3104「TJOI2019」甲苯先生的字符串

    题目描述 一天小甲苯得到了一条神的指示,他要把神的指示写下来,但是又不能泄露天机,所以他要用一种方法把神的指示记下来. 神的指示是一个字符串,记为字符串 \(s_1\),\(s_1\) 仅包含小写字母 ...

  2. 【LOJ】#3109. 「TJOI2019」甲苯先生的线段树

    LOJ#3109. 「TJOI2019」甲苯先生的线段树 发现如果枚举路径两边的长度的话,如果根节点的值是$x$,左边走了$l$,右边走了$r$ 肯定答案会是$(2^{l + 1} + 2^{r + ...

  3. LG5338/BZOJ5509/LOJ3105 「TJOI2019」甲苯先生的滚榜 Treap

    问题描述 LG5338 LOJ3105 BZOJ5509 题解 建立一棵\(\mathrm{Treap}\),把原来的\(val\)换成两个值\(ac,tim\) 原来的比较\(val_a<va ...

  4. 「TJOI2019」甲苯先生的滚榜

    题目链接 问题分析 参照数据范围,我们需要一个能够在\(O(n\log n)\)复杂度内维护有序数列的数据结构.那么平衡树是很好的选择.参考程序中使用带旋Treap. 参考程序 #pragma GCC ...

  5. LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)

    题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...

  6. loj#2013. 「SCOI2016」幸运数字 点分治/线性基

    题目链接 loj#2013. 「SCOI2016」幸运数字 题解 和树上路径有管...点分治吧 把询问挂到点上 求出重心后,求出重心到每个点路径上的数的线性基 对于重心为lca的合并寻味,否则标记下传 ...

  7. 「TJOI2019」大中锋的游乐场

    题目链接 问题分析 比较明显的最短路模型.需要堆优化的dij.建图的时候注意细节就好. 参考程序 #include <bits/stdc++.h> #define LL long long ...

  8. 「TJOI2019」唱、跳、rap 和篮球

    题目链接 题目分析 据说这是一道生成函数题 看到限制条件,我们首先想到的就是对有多少组讨论cxk的人进行容斥.然后就是求剩下的人随便放有多少种方法了.考虑现在每种剩\(a,b,c,d\)人,还需要排\ ...

  9. 「TJOI2019」唱、跳、rap 和篮球 题解

    题意就不用讲了吧-- 鸡你太美!!! 题意: 有 \(4\) 种喜好不同的人,分别最爱唱.跳. \(rap\).篮球,他们个数分别为 \(A,B,C,D\) ,现从他们中挑选出 \(n\) 个人并进行 ...

随机推荐

  1. ES6面向对象 动态添加标签页

    HTML <!DOCTYPE html> <html lang="en" xmlns="http://www.w3.org/1999/xhtml&quo ...

  2. WebSessionStore: Could not obtain reference to HttpContext

    IBatis.net在多线程中报错“WebSessionStore: Could not obtain reference to HttpContext” 分析: 因为ibatis的ISqlMapSe ...

  3. Saltstack_使用指南09_远程执行-编写执行模块

    1. 主机规划 salt 版本 [root@salt100 ~]# salt --version salt (Oxygen) [root@salt100 ~]# salt-minion --versi ...

  4. 解决测试redis集群时报"java.lang.NumberFormatException: For input string: "7003@17003..7002@17002"等异常

    一.前言 关于redis5.0的集群模式下,通过客户端测试代码调试报"Exception in thread "main" java.lang.NumberFormatE ...

  5. C#&.Net干货分享-构造QRCoderHelper生成二维码图片

    不想说废话,直接源码拿去用... /// <summary>    /// 二维码管理    /// </summary>    public class QRCoderHel ...

  6. 「漏洞预警」Apache Flink 任意 Jar 包上传导致远程代码执行漏洞复现

    漏洞描述 Apache Flink是一个用于分布式流和批处理数据的开放源码平台.Flink的核心是一个流数据流引擎,它为数据流上的分布式计算提供数据分发.通信和容错功能.Flink在流引擎之上构建批处 ...

  7. MySQL 主从复制问题

    导致SQL线程故障原因分析及解决方案 原因 1. 版本差异,参数设定不同,比如:数据类型的差异,SQL_MODE影响 2. 要创建的数据库对象已经存在 3. 要删除或修改的对象不存在 4. DML语句 ...

  8. 字节码联盟成立,WebAssembly 生态将完善网络安全性

    近日 Mozilla.Fastly.Intel 与 Red Hat 宣布成立联合组织 Bytecode Alliance(字节码联盟),该联盟旨在通过协作实施标准和提出新标准,以完善 WebAssem ...

  9. 【洛谷5643】[PKUWC2018] 随机游走(Min-Max容斥+待定系数法+高维前缀和)

    点此看题面 大致题意: 从一个给定点出发,在一棵树上随机游走,对于相邻的每个点均有\(\frac 1{deg}\)的概率前往.多组询问,每次给出一个点集,求期望经过多少步能够访问过点集内所有点至少一次 ...

  10. MySql索引背后的数据结构及算法

    本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree ...