Spark中持久化和序列化学习
一、cache和persisit的对比
-rw-r--r--@ 1 hadoop staff 68M 5 17 07:04 access.log



cache/persitence是 lazy的,延迟加载
unpersitence是立即执行的
@DeveloperApi
class StorageLevel private(
private var _useDisk: Boolean,
private var _useMemory: Boolean,
private var _useOffHeap: Boolean,
private var _deserialized: Boolean,
private var _replication: Int = 1)
extends Externalizable { }
/**
* Various [[org.apache.spark.storage.StorageLevel]] defined and utility functions for creating
* new storage levels.
*/
object StorageLevel {
val NONE = new StorageLevel(false, false, false, false)
val DISK_ONLY = new StorageLevel(true, false, false, false)
val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
val MEMORY_ONLY = new StorageLevel(false, true, false, true)
val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)
val OFF_HEAP = new StorageLevel(true, true, true, false, 1)
/**
* Persist this RDD with the default storage level (`MEMORY_ONLY`).
*/
def persist(): this.type = persist(StorageLevel.MEMORY_ONLY)
/**
* Persist this RDD with the default storage level (`MEMORY_ONLY`).
*/
def cache(): this.type = persist()
/**
* Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.
*
* @param blocking Whether to block until all blocks are deleted.
* @return This RDD.
*/
def unpersist(blocking: Boolean = true): this.type = {
logInfo("Removing RDD " + id + " from persistence list")
sc.unpersistRDD(id, blocking)
storageLevel = StorageLevel.NONE
this
}
/** Get the RDD's current storage level, or StorageLevel.NONE if none is set. */
def getStorageLevel: StorageLevel = storageLevel
二、序列化测试Java和kyro
序列化:
默认java序列化类User
使用kyro序列化没有未注册类User
使用kryo序列化并注册类User
默认java序列化类User
import scala.collection.mutable.ListBuffer
class User(id:Int,username:String,age:String) extends Serializable
val users = new ListBuffer[User]
for(i <- 1 to 1000000){
users.+=(new User(i,"name"+i,i.toString))
}
val usersRDD=sc.parallelize(users)
import org.apache.spark.storage.StorageLevel
usersRDD.persist(StorageLevel.MEMORY_ONLY_SER)
usersRDD.foreach(println(_))
使用kyro序列化没有未注册类User
import org.apache.spark.SparkConf
val sparkConf= new SparkConf()
sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
import org.apache.spark.SparkContext
使用kryo序列化并注册类User
sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
sparkConf.registerKryoClasses(Array(classOf[User]))
Spark中持久化和序列化学习的更多相关文章
- 在Spark中自定义Kryo序列化输入输出API(转)
原文链接:在Spark中自定义Kryo序列化输入输出API 在Spark中内置支持两种系列化格式:(1).Java serialization:(2).Kryo serialization.在默认情况 ...
- 在Spark中使用Kryo序列化
spark序列化 对于优化<网络性能>极为重要,将RDD以序列化格式来保存减少内存占用. spark.serializer=org.apache.spark.serializer.Jav ...
- 大数据学习day19-----spark02-------0 零碎知识点(分区,分区和分区器的区别) 1. RDD的使用(RDD的概念,特点,创建rdd的方式以及常见rdd的算子) 2.Spark中的一些重要概念
0. 零碎概念 (1) 这个有点疑惑,有可能是错误的. (2) 此处就算地址写错了也不会报错,因为此操作只是读取数据的操作(元数据),表示从此地址读取数据但并没有进行读取数据的操作 (3)分区(有时间 ...
- Spark的持久化简记
摘要: 1.spark 提供的持久化方法 2.Spark的持久化级别 3.如何选择一种最合适的持久化策略 内容: 1.spark 提供的持久化方法 如果要对一个RDD进行持久化,只要对这个RDD调用c ...
- spark 中的RDD编程 -以下基于Java api
1.RDD介绍: RDD,弹性分布式数据集,即分布式的元素集合.在spark中,对所有数据的操作不外乎是创建RDD.转化已有的RDD以及调用RDD操作进行求值.在这一切的背后,Spark会自动 ...
- 【Spark篇】---Spark中控制算子
一.前述 Spark中控制算子也是懒执行的,需要Action算子触发才能执行,主要是为了对数据进行缓存. 控制算子有三种,cache,persist,checkpoint,以上算子都可以将RDD持久化 ...
- Spark RDD持久化、广播变量和累加器
Spark RDD持久化 RDD持久化工作原理 Spark非常重要的一个功能特性就是可以将RDD持久化在内存中.当对RDD执行持久化操作时,每个节点都会将自己操作的RDD的partition持久化到内 ...
- Tachyon在Spark中的作用(Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks 论文阅读翻译)
摘要: Tachyon是一种分布式文件系统,能够借助集群计算框架使得数据以内存的速度进行共享.当今的缓存技术优化了read过程,可是,write过程由于须要容错机制,就须要通过网络或者 ...
- java 的持久化和序列化的简单理解
1.对象的持久化(Persistence) 对象持久化就是让对象的生存期超越使用对象的程序的运行期.将对象存储在可持久保存的存储介质上,在实际应用中,运用相应的对象持久化框架,将业务数据以对象的方式保 ...
随机推荐
- Java面试题_第四阶段
1.1 电商行业特点 1.分布式 垂直拆分:根据功能模块进行拆分 水平拆分:根据业务层级进行拆分 2.高并发 用户单位时间内访问服务器数量,是电商行业中面临的主要问题 3.集群 抗击高兵发的有效手段, ...
- 痛苦的 java.net.BindException: Address already in use: connect —— Nacos的坑
我的dubbo应用, 刚开始的时候,启动一两个是没有问题的, 启动多了就大量出现: -- :: --- [TaskScheduler-] o.s.c.a.nacos.discovery.NacosWa ...
- Spring Boot Quartz 分布式集群任务调度实现
Spring Boot Quartz 主要内容 Spring Scheduler 框架 Quartz 框架,功能强大,配置灵活 Quartz 集群 mysql 持久化定时任务脚本(tables_mys ...
- Android8.1 SystemUI源码分析之 Notification流程
代码流程 1.先看UI显示,StatuBar加载 CollapsedStatusBarFragment 替换 status_bar_container(状态栏通知显示区域) SystemUI\src\ ...
- 前端开发规范:2-HTML
HTML标签 文档声明,除非必须要兼容IE6等远古浏览器,否则一律使用HTML5文档类型申明<!DOCTYPE html> 标签闭合,img.br.hr 等自闭合标签不使用闭合斜杠 met ...
- apache commons lang架包介绍
commons lang组件介绍和学习 介绍 Java语言开发时有一个隐患,那就是java支持null值,这就导致很多时候操作可能会出异常. 因此很多第三方组件都会提供安全null safe 操作(即 ...
- IDEA新建servlet时出现的错误
未注入Tomcat里lib文件下的jar 这样即可
- Flink01
1. 什么是Flink? 1.1 4代大数据计算引擎 第一代: MapReducer 批处理 Mapper, Reducer Hadoop的MapReducer将计算分为两个阶段, 分别为Map和Re ...
- RMAN RECOVER TABLE 功能是 Oracle Database 12c 的新增功能 (Doc ID 1521524.1)
RMAN RECOVER TABLE Feature New to Oracle Database 12c (Doc ID 1521524.1) APPLIES TO: Oracle Database ...
- 用dotnet core搭建web服务器(二)路由表与封装
https://gitee.com/lightsever/netcore_study/tree/master/server02_path 先上代码,首先我们把httpserver封装一下,以后用起来方 ...