A straight dirt road connects two fields on FJ's farm, but it changes elevation more than FJ would like. His cows do not mind climbing up or down a single slope, but they are not fond of an alternating succession of hills and valleys. FJ would like to add and remove dirt from the road so that it becomes one monotonic slope (either sloping up or down).

You are given N integers A1, ... , AN (1 ≤ N ≤ 2,000) describing the elevation (0 ≤ Ai ≤ 1,000,000,000) at each of N equally-spaced positions along the road, starting at the first field and ending at the other. FJ would like to adjust these elevations to a new sequence B1, . ... , BN that is either nonincreasing or nondecreasing. Since it costs the same amount of money to add or remove dirt at any position along the road, the total cost of modifying the road is

| A 1 - B 1| + | A 2 - B 2| + ... + | AN - BN |

Please compute the minimum cost of grading his road so it becomes a continuous slope. FJ happily informs you that signed 32-bit integers can certainly be used to compute the answer.

Input

* Line 1: A single integer: N
* Lines 2..N+1: Line i+1 contains a single integer elevation: Ai

Output

* Line 1: A single integer that is the minimum cost for FJ to
grade his dirt road so it becomes nonincreasing or nondecreasing in
elevation.

Sample Input

7
1
3
2
4
5
3
9

Sample Output

3

题解:
  这个题目我们先考虑暴力,dp[i][j]表示dp到i这一位,最后一个数是j的最小花费,那么状态数是n*(l~r),显然是不行的。
  考虑一个小优化,因为只有数j在序列中出现过才会有用,所以第二维可以改为第j大的数,这样子状态数就是n^2级别的了,转移是(上升)dp[i][j]=min(dp[i-1][1~j])+abs(hi[i]-hi[j)。
  把这个式子列出来就知道怎么优化转移了,计D[i][j]=min(dp[i][1~j]),那么转移就是D[i][j]=min*+(D[i][j-1],dp[i][j]),转移就变成O(n)的了。
代码:
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
#define MAXN 2020
#define inf 0x3f3f3f3f3f
#define ll long long
using namespace std;
ll dp[MAXN][MAXN],last[MAXN],hi[MAXN],rak[MAXN],D[MAXN][MAXN],ans=inf;
int n; ll abss(ll x){
if(x<) return -x;
return x;
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%lld",&hi[i]),rak[i]=hi[i];
sort(rak+,rak+n+);
memset(D,inf,sizeof(D));
memset(dp,inf,sizeof(dp));
for(int i=;i<=n;i++) dp[][i]=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++){
if(i==) dp[i][j]=abss(hi[i]-rak[j]);
else dp[i][j]=D[i-][j]+abss(hi[i]-rak[j]);
D[i][j]=min(D[i][j-],dp[i][j]);
}
for(int i=;i<=n;i++) ans=min(ans,dp[n][i]);
memset(dp,inf,sizeof(dp));
memset(D,inf,sizeof(D));
for(int i=;i<=n;i++) dp[][i]=;
for(int i=;i<=n;i++)
for(int j=n;j>=;j--){
if(i==) dp[i][j]=abss(hi[i]-rak[j]);
else dp[i][j]=D[i-][j]+abss(hi[i]-rak[j]);
D[i][j]=min(D[i][j+],dp[i][j]);
}
for(int i=;i<=n;i++) ans=min(ans,dp[n][i]);
printf("%lld\n",ans);
return ;
}

Making the Grade POJ - 3666的更多相关文章

  1. S - Making the Grade POJ - 3666 结论 将严格递减转化成非严格的

    S - Making the Grade POJ - 3666 这个题目要求把一个给定的序列变成递增或者递减序列的最小代价. 这个是一个dp,对于这个dp的定义我觉得不是很好想,如果第一次碰到的话. ...

  2. A-Making the Grade(POJ 3666)

    Making the Grade Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4656   Accepted: 2206 ...

  3. DP:Making the Grade(POJ 3666)

     聪明的修路方案 题目大意:就是农夫要修一条路,现在要求这条路要么就是上升的,要么就是下降的,总代价为∑|a[i]-b[i]|,求代价最低的修路方案, (0 ≤ β≤ 1,000,000,000) , ...

  4. Poj 3666 Making the Grade (排序+dp)

    题目链接: Poj 3666 Making the Grade 题目描述: 给出一组数,每个数代表当前位置的地面高度,问把路径修成非递增或者非递减,需要花费的最小代价? 解题思路: 对于修好的路径的每 ...

  5. 「POJ 3666」Making the Grade 题解(两种做法)

    0前言 感谢yxy童鞋的dp及暴力做法! 1 算法标签 优先队列.dp动态规划+滚动数组优化 2 题目难度 提高/提高+ CF rating:2300 3 题面 「POJ 3666」Making th ...

  6. 把一个序列转换成非严格递增序列的最小花费 POJ 3666

    //把一个序列转换成非严格递增序列的最小花费 POJ 3666 //dp[i][j]:把第i个数转成第j小的数,最小花费 #include <iostream> #include < ...

  7. POJ - 3666 Making the Grade(dp+离散化)

    Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...

  8. POJ 3666 Making the Grade(数列变成非降序/非升序数组的最小代价,dp)

    传送门: http://poj.org/problem?id=3666 Making the Grade Time Limit: 1000MS   Memory Limit: 65536K Total ...

  9. POJ 3666 Making the Grade(二维DP)

    题目链接:http://poj.org/problem?id=3666 题目大意:给出长度为n的整数数列,每次可以将一个数加1或者减1,最少要多少次可以将其变成单调不降或者单调不增(题目BUG,只能求 ...

随机推荐

  1. this指哪儿

    this的指向问题 一.this初识 this是javascript中最复杂的机制之一.它尤为特殊,被自动定义在所有函数的作用域中.这篇文章将浅析this与函数的关系. 二.了解this 学习this ...

  2. zookeeper学习(一)_简介

    上篇文章 我们已经安装上了zookeeper,也简单的体验了一把,但是如果让你给别人介绍下zookeeper,可能也是说不出来.本篇文章就参考了网上各位优秀博主的文章,整理出自己更能理解的内容 优秀博 ...

  3. Guava的RateLimiter实现接口限流

    最近开发需求中有需要对后台接口进行限流处理,整理了一下基本使用方法. 首先添加guava依赖: <dependency> <groupId>com.google.guava&l ...

  4. ACM卡常数(各种玄学优化)

    首先声明,本博文部分内容仅仅适用于ACM竞赛,并不适用于NOIP与OI竞赛,违规使用可能会遭竞赛处理,请慎重使用!遭遇任何情况都与本人无关哈=7= 我也不想搞得那么严肃的,但真的有些函数在NOIP与O ...

  5. Single Number 普通解及最小空间解(理解异或)

    原题目 Given a non-empty array of integers, every element appears twice except for one. Find that singl ...

  6. charles DNS欺骗

    本文参考:charles DNS欺骗 DNS欺骗/DNS Spoofing 功能:通过将您自己的主机名指定给远程地址映射来欺骗DNS查找 一般的开发流程中,在上线之前都需要在测试环境中先行进行验证,而 ...

  7. LeetCode 把二叉搜索树转换为累加树

    第538题 给定一个二叉搜索树(Binary Search Tree),把它转换成为累加树(Greater Tree),使得每个节点的值是原来的节点值加上所有大于它的节点值之和. 例如: 输入: 二叉 ...

  8. CSS3-边框 border

    一.圆角效果 border-radius 使用方法: border-radius:10px; /* 所有角都使用半径为10px的圆角 */ border-radius: 5px 4px 3px 2px ...

  9. Day 18 软件管理3之搭建网络仓库

    搭建一个网络仓库 服务端: 10.0.0.200   1.准备软件包( 1.光盘 2.缓存 3.联网下载 4.同步 ) 2.通过p共享软件包存放的目录 3.将光盘中的软件包都拷贝至p的共享目录下 4. ...

  10. Android静态注册广播无法接收的问题(8.0+版本)

    如果你静态注册的广播无法接收到消息,请先检查下:你的安卓版本是不是8.0+ * 前言** Google官方声明:Beginning with Android 8.0 (API level 26), t ...