1. Variable definitions

m : training examples' count

\(y\) :

\(X\) : design matrix. each row of \(X\) is a training example, each column of \(X\) is a feature

\[X =
\begin{pmatrix}
1 & x^{(1)}_1 & ... & x^{(1)}_n \\
1 & x^{(2)}_1 & ... & x^{(2)}_n \\
... & ... & ... & ... \\
1 & x^{(n)}_1 & ... & x^{(n)}_n \\
\end{pmatrix}\]

\[\theta =
\begin{pmatrix}
\theta_0 \\
\theta_1 \\
... \\
\theta_n \\
\end{pmatrix}\]

2. Hypothesis

\[x=
\begin{pmatrix}
x_0 \\
x_1 \\
... \\
x_n \\
\end{pmatrix}
\]

\[h_\theta(x) = g(\theta^T x) = g(x_0\theta_0 + x_1\theta_1 + ... + x_n\theta_n),
\]

sigmoid function

\[g(z) = \frac{1}{1 + e^{-z}},
\]

g = 1 ./ (1 + e .^ (-z));

3. Cost functioin

\[J(\theta) = \frac{1}{m}\sum_{i=1}^m[-y^{(i)}log(h_\theta(x^{(i)})) - (1-y^{(i)})log(1 - h_\theta(x^{(i)}))],
\]

vectorization edition of Octave

J = -(1 / m) * sum(y' * log(sigmoid(X * theta)) + (1 - y)' * log(1 - sigmoid(X * theta)));

4. Goal

find \(\theta\) to minimize \(J(\theta)\), \(\theta\) is a vector here

4.1 Gradient descent

\[\frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})x^{(i)}_j,
\]

repeat until convergence{

     \(\theta_j := \theta_j - \frac{\alpha}{m } \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}_j\)

}

vectorization

\[S=
\begin{pmatrix}
h_\theta(x^{(1)})-y^{(1)} & h_\theta(x^{(2)})-y^{(2)} & ... & h_\theta(x^{(n)}-y^{(n)})
\end{pmatrix}
\begin{pmatrix}
x^{(1)}_0 & x^{(1)}_1 & ... & x^{(1)}_3 \\
x^{(2)}_0 & x^{(2)}_1 & ... & x^{(2)}_3 \\
... & ... & ... & ... \\
x^{(n)}_0 & x^{(n)}_1 & ... & x^{(n)}_3 \\
\end{pmatrix}
\]

\[=
\begin{pmatrix}
\sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})x^{(i)}_0 &
\sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})x^{(i)}_1 &
... &
\sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})x^{(i)}_n
\end{pmatrix}
\]

\[\theta = \theta - S^T
\]

\[h_\theta(X) = g(X\theta) = \frac{1}{1 + e^{(-X\theta)}}
\]

\(X\theta\) is nx1, \(y\) is nx1

\(\frac{1}{1+e^{X\theta}} - y\) is nx1

\[\frac{1}{1 + e^{(-X\theta)}} - y=
\begin{pmatrix}
h_\theta(x^{(1)})-y^{(1)} & h_\theta(x^{(2)})-y^{(2)} & ... & h_\theta(x^{(n)})-y^{(n)}
\end{pmatrix}
\]

\[\theta = \theta - \alpha(\frac{1}{1 + e^{(-X\theta)}} - y)X
\]

[Machine Learning] Linear regression的更多相关文章

  1. Machine Learning—Linear Regression

    Evernote的同步分享:Machine Learning-Linear Regression 版权声明:本文博客原创文章.博客,未经同意,不得转载.

  2. 机器学习---线性回归(Machine Learning Linear Regression)

    线性回归是机器学习中最基础的模型,掌握了线性回归模型,有利于以后更容易地理解其它复杂的模型. 线性回归看似简单,但是其中包含了线性代数,微积分,概率等诸多方面的知识.让我们先从最简单的形式开始. 一元 ...

  3. 机器学习---三种线性算法的比较(线性回归,感知机,逻辑回归)(Machine Learning Linear Regression Perceptron Logistic Regression Comparison)

    最小二乘线性回归,感知机,逻辑回归的比较:   最小二乘线性回归 Least Squares Linear Regression 感知机 Perceptron 二分类逻辑回归 Binary Logis ...

  4. 机器学习---逻辑回归(二)(Machine Learning Logistic Regression II)

    在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在 ...

  5. 机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)

    逻辑回归(Logistic Regression)是一种经典的线性分类算法.逻辑回归虽然叫回归,但是其模型是用来分类的. 让我们先从最简单的二分类问题开始.给定特征向量x=([x1,x2,...,xn ...

  6. [Machine learning] Logistic regression

    1. Variable definitions m : training examples' count \(X\) : design matrix. each row of \(X\) is a t ...

  7. 机器学习---最小二乘线性回归模型的5个基本假设(Machine Learning Least Squares Linear Regression Assumptions)

    在之前的文章<机器学习---线性回归(Machine Learning Linear Regression)>中说到,使用最小二乘回归模型需要满足一些假设条件.但是这些假设条件却往往是人们 ...

  8. 机器学习---用python实现最小二乘线性回归算法并用随机梯度下降法求解 (Machine Learning Least Squares Linear Regression Application SGD)

    在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践 ...

  9. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

随机推荐

  1. SPOJ - GSS1-Can you answer these queries I 线段树维护区间连续和最大值

    SPOJ - GSS1:https://vjudge.net/problem/SPOJ-GSS1 参考:http://www.cnblogs.com/shanyr/p/5710152.html?utm ...

  2. Codeforces 889F Letters Removing(二分 + 线段树 || 树状数组)

    Letters Removing 题意:给你一个长度为n的字符串,然后进行m次删除操作,每次删除区间[l,r]内的某个字符,删除后并且将字符串往前补位,求删除完之后的字符串. 题解:先开80个set ...

  3. Count on a tree 树上区间第K小

    Count on a tree 题意:求路径 u到v上的 第k小的权重. 题解:先DFS建数, 然后对于每个节点往上跑出一颗主席树, 然后每次更新. 查询的时候, u, v, k, 找到  z = l ...

  4. Disruptor中shutdown方法失效,及产生的不确定性源码分析

    版权声明:原创作品,谢绝转载!否则将追究法律责任. Disruptor框架是一个优秀的并发框架,利用RingBuffer中的预分配内存实现内存的可重复利用,降低了GC的频率. 具体关于Disrupto ...

  5. input上传按钮的优化

    在使用input标签按钮的时候,<input type="file" value="" /> 显示很难看,怎么办? 使用label <li c ...

  6. Linux 安装二进制MySQL 及 破解MySQL密码

    1.确保系统中有依赖的libaio 软件,如果没有: yum -y install libaio 2.解压二进制MySQL软件包 tar xf mysql-5.7.24-linux-glibc2.12 ...

  7. 谈谈你对HTML语义化的理解。

    1.什么是HTML语义化? 基本上都是围绕着几个主要的标签,像标题(h1-h6),列表(li),强调(strong em)等. 根据内容的语义化(内容结构化),选择合适的标签(代码语义化),便于开发者 ...

  8. .Net基础篇_学习笔记_第五天_流程控制while循环002

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  9. mysql 5.5之参数详解

    [mysql]default-character-set=utf8 [mysqld] datadir=/var/lib/mysqlsocket=/var/lib/mysql/mysql.sock # ...

  10. redux的简单使用

    Redux 我从学react起,一共写了三次react项目第一次是学生选课系统,完全不知道生命周期的规律和顺序,也不知道axios到底应该放在哪里才能更好的请求到,文件分工不明确,没有体现组件化的优势 ...