1. Variable definitions

m : training examples' count

\(y\) :

\(X\) : design matrix. each row of \(X\) is a training example, each column of \(X\) is a feature

\[X =
\begin{pmatrix}
1 & x^{(1)}_1 & ... & x^{(1)}_n \\
1 & x^{(2)}_1 & ... & x^{(2)}_n \\
... & ... & ... & ... \\
1 & x^{(n)}_1 & ... & x^{(n)}_n \\
\end{pmatrix}\]

\[\theta =
\begin{pmatrix}
\theta_0 \\
\theta_1 \\
... \\
\theta_n \\
\end{pmatrix}\]

2. Hypothesis

\[x=
\begin{pmatrix}
x_0 \\
x_1 \\
... \\
x_n \\
\end{pmatrix}
\]

\[h_\theta(x) = g(\theta^T x) = g(x_0\theta_0 + x_1\theta_1 + ... + x_n\theta_n),
\]

sigmoid function

\[g(z) = \frac{1}{1 + e^{-z}},
\]

g = 1 ./ (1 + e .^ (-z));

3. Cost functioin

\[J(\theta) = \frac{1}{m}\sum_{i=1}^m[-y^{(i)}log(h_\theta(x^{(i)})) - (1-y^{(i)})log(1 - h_\theta(x^{(i)}))],
\]

vectorization edition of Octave

J = -(1 / m) * sum(y' * log(sigmoid(X * theta)) + (1 - y)' * log(1 - sigmoid(X * theta)));

4. Goal

find \(\theta\) to minimize \(J(\theta)\), \(\theta\) is a vector here

4.1 Gradient descent

\[\frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})x^{(i)}_j,
\]

repeat until convergence{

     \(\theta_j := \theta_j - \frac{\alpha}{m } \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}_j\)

}

vectorization

\[S=
\begin{pmatrix}
h_\theta(x^{(1)})-y^{(1)} & h_\theta(x^{(2)})-y^{(2)} & ... & h_\theta(x^{(n)}-y^{(n)})
\end{pmatrix}
\begin{pmatrix}
x^{(1)}_0 & x^{(1)}_1 & ... & x^{(1)}_3 \\
x^{(2)}_0 & x^{(2)}_1 & ... & x^{(2)}_3 \\
... & ... & ... & ... \\
x^{(n)}_0 & x^{(n)}_1 & ... & x^{(n)}_3 \\
\end{pmatrix}
\]

\[=
\begin{pmatrix}
\sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})x^{(i)}_0 &
\sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})x^{(i)}_1 &
... &
\sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})x^{(i)}_n
\end{pmatrix}
\]

\[\theta = \theta - S^T
\]

\[h_\theta(X) = g(X\theta) = \frac{1}{1 + e^{(-X\theta)}}
\]

\(X\theta\) is nx1, \(y\) is nx1

\(\frac{1}{1+e^{X\theta}} - y\) is nx1

\[\frac{1}{1 + e^{(-X\theta)}} - y=
\begin{pmatrix}
h_\theta(x^{(1)})-y^{(1)} & h_\theta(x^{(2)})-y^{(2)} & ... & h_\theta(x^{(n)})-y^{(n)}
\end{pmatrix}
\]

\[\theta = \theta - \alpha(\frac{1}{1 + e^{(-X\theta)}} - y)X
\]

[Machine Learning] Linear regression的更多相关文章

  1. Machine Learning—Linear Regression

    Evernote的同步分享:Machine Learning-Linear Regression 版权声明:本文博客原创文章.博客,未经同意,不得转载.

  2. 机器学习---线性回归(Machine Learning Linear Regression)

    线性回归是机器学习中最基础的模型,掌握了线性回归模型,有利于以后更容易地理解其它复杂的模型. 线性回归看似简单,但是其中包含了线性代数,微积分,概率等诸多方面的知识.让我们先从最简单的形式开始. 一元 ...

  3. 机器学习---三种线性算法的比较(线性回归,感知机,逻辑回归)(Machine Learning Linear Regression Perceptron Logistic Regression Comparison)

    最小二乘线性回归,感知机,逻辑回归的比较:   最小二乘线性回归 Least Squares Linear Regression 感知机 Perceptron 二分类逻辑回归 Binary Logis ...

  4. 机器学习---逻辑回归(二)(Machine Learning Logistic Regression II)

    在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在 ...

  5. 机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)

    逻辑回归(Logistic Regression)是一种经典的线性分类算法.逻辑回归虽然叫回归,但是其模型是用来分类的. 让我们先从最简单的二分类问题开始.给定特征向量x=([x1,x2,...,xn ...

  6. [Machine learning] Logistic regression

    1. Variable definitions m : training examples' count \(X\) : design matrix. each row of \(X\) is a t ...

  7. 机器学习---最小二乘线性回归模型的5个基本假设(Machine Learning Least Squares Linear Regression Assumptions)

    在之前的文章<机器学习---线性回归(Machine Learning Linear Regression)>中说到,使用最小二乘回归模型需要满足一些假设条件.但是这些假设条件却往往是人们 ...

  8. 机器学习---用python实现最小二乘线性回归算法并用随机梯度下降法求解 (Machine Learning Least Squares Linear Regression Application SGD)

    在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践 ...

  9. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

随机推荐

  1. CF 462 C. A Twisty Movement 分段想 线段树 或 dp

    题意 有一个只包含1和2的序列,试翻转一个区间,使得结果中非连续非递减数列最长. 思路 一. 作出1的前缀计数和为cnt1,2的后缀计数和为cnt2, 由于要找出[1,1,1][2,2,2][1,1, ...

  2. P2467 [SDOI2010]地精部落 DP

    传送门:https://www.luogu.org/problemnew/show/P2467 参考与学习:https://www.luogu.org/blog/user55639/solution- ...

  3. 牛客 136J-洋灰三角 +高中数学博大精深

    参考学习:http://www.cnblogs.com/l609929321/p/9500814.html 牛客 136J-洋灰三角 题意: 在一个1 * n的棋盘中,第一格放1,之后的每一个放前一个 ...

  4. Python中字典,集合和元组函数总结

    ## 字典的所有方法- 内置方法 - 1 cmp(dict1, dict2) 比较两个字典元素. - 2 len(dict) 计算字典元素个数,即键的总数. - 3 str(dict) 输出字典可打印 ...

  5. Nginx实现高可用(了解)

    使用nginx实现反向代理和负载均衡时,nginx就是整个网站的入口了,所以需要保证nginx的高可用 主要资料包:链接:https://pan.baidu.com/s/1z_-xEM3uUICtZi ...

  6. eclipse中离线安装activit插件

    离线安装activiti教程: 1.先下载压缩包和jar包 链接:https://pan.baidu.com/s/1hSToZt_4A262rUxc8KToCw 密码:j5r1 2.将下载好的jars ...

  7. Windows服务器远程桌面不能复制粘贴的解决方法

    今天使用windows 2008服务器,实然就不能从本地复制内容和粘贴内容了,从网上找了下原因,最终解决了.一般本地和服务器不能复制粘贴分两种情况: 情况一:复制粘贴功能原本可以用,突然失灵了. 解决 ...

  8. JAVA集成JPush

    本篇集成为web项目手动集成JPush 一.获取AppKey.Master Secret https://docs.jiguang.cn 成为极光用户创建一个应用拿到(AppKey.Master Se ...

  9. 6、二叉树树(java实现)

    1.创建树的节点 public class Node { public Object data; //存储数据 public Node leftChild; //左子树指针 public Node r ...

  10. linux环境上anaconda的安装与卸载

    首先下载linux上anaconda的安装包: $ wget https://repo.anaconda.com/archive/Anaconda3-5.1.0-Linux-x86_64.sh 然后赋 ...