2019 Multi-University Training Contest 4
A. AND Minimum Spanning Tree
solved by rdc 21min -1 数组开小了,解体了一次。
题意 给一棵树,两点之间边权为 x & y,求最小生成树。
做法 比赛时,打表找规律。emmmm 其实可以冷静分析一下的,每个点连向最低位 0 的位置即可
C. Divide the Stones
题意 \(n\) 个石头,第 \(i\) 个质量为 \(i\),分成 \(k\) 堆,每堆总质量相等。
做法
- \(\frac{n}{k}\) 为偶数。
- \(\frac{n}{k}\) 为奇数。
复盘
比赛中,在玩
2019 Multi-University Training Contest 4的更多相关文章
- 2019 Nowcoder Multi-University Training Contest 4 E Explorer
线段树分治. 把size看成时间,相当于时间 $l$ 加入这条边,时间 $r+1$ 删除这条边. 注意把左右端点的关系. #include <bits/stdc++.h> ; int X[ ...
- 2019 Nowcoder Multi-University Training Contest 1 H-XOR
由于每个元素贡献是线性的,那么等价于求每个元素出现在多少个异或和为$0$的子集内.因为是任意元素可以去异或,那么自然想到线性基.先对整个集合A求一遍线性基,设为$R$,假设$R$中元素个数为$r$,那 ...
- 2019 Multi-University Training Contest 8
2019 Multi-University Training Contest 8 C. Acesrc and Good Numbers 题意 \(f(d,n)\) 表示 1 到 n 中,d 出现的次数 ...
- 2019 Multi-University Training Contest 7
2019 Multi-University Training Contest 7 A. A + B = C 题意 给出 \(a,b,c\) 解方程 \(a10^x+b10^y=c10^z\). tri ...
- 2019 Multi-University Training Contest 1
2019 Multi-University Training Contest 1 A. Blank upsolved by F0_0H 题意 给序列染色,使得 \([l_i,r_i]\) 区间内恰出现 ...
- 2019 Multi-University Training Contest 2
2019 Multi-University Training Contest 2 A. Another Chess Problem B. Beauty Of Unimodal Sequence 题意 ...
- 2019 Multi-University Training Contest 5
2019 Multi-University Training Contest 5 A. fraction upsolved 题意 输入 \(x,p\),输出最小的 \(b\) 使得 \(bx\%p&l ...
- HDU校赛 | 2019 Multi-University Training Contest 6
2019 Multi-University Training Contest 6 http://acm.hdu.edu.cn/contests/contest_show.php?cid=853 100 ...
- HDU校赛 | 2019 Multi-University Training Contest 5
2019 Multi-University Training Contest 5 http://acm.hdu.edu.cn/contests/contest_show.php?cid=852 100 ...
- HDU校赛 | 2019 Multi-University Training Contest 4
2019 Multi-University Training Contest 4 http://acm.hdu.edu.cn/contests/contest_show.php?cid=851 100 ...
随机推荐
- IDEA自定义配置
目录 1 常规设置 1 修改字体大小 2 创建文件时 增加注释信息 3 项目编码为UTF-8 4 properties 文件编码为UTF-8且Transparent native-to-ascii c ...
- 【Java】Exception thrown by the agent : java.rmi.server.ExportException: Port already in use: 1099
详细信息如下: Error: Exception thrown by the agent : java.rmi.server.ExportException: Port already in use: ...
- DevOps相关知识点
DevOps 持续集成 简述 持续集成简称CI,是软件的开发和发布标准流程的最重要的部分 作为一个开发实践,在C中可以通过自动化等手段高频地去获取产品反馈并响应反馈的过程 简单的来说,持续集成就是持续 ...
- UE4 坐标系 坐标轴旋转轴
Pitch是围绕Y轴旋转,也叫做俯仰角. Yaw是围绕Z轴旋转,也叫偏航角. Roll是围绕X轴旋转,也叫翻滚角. UE4里,蓝图中的rotation的三个依次为roll,pitch,yaw.C++中 ...
- PID算法通俗理解,平衡车,倒立摆,适合不理解PID算法的人来看!
先插句广告,本人QQ522414928,不熟悉PID算法的可以一起交流学习,随时在线(PID资料再我的另一篇博客里) 倒立摆资料连接↓ https://www.cnblogs.com/LiuXinyu ...
- java遍历所有目录和文件
package xian; import java.io.File; import java.util.ArrayList; public class GetFile { private static ...
- 数字麦克风PDM信号采集与STM32 I2S接口应用
数字麦克风采用MEMS技术,将声波信号转换为数字采样信号,由单芯片实现采样量化编码,一般而言数字麦克风的输出有PDM麦克风和PCM麦克风,由于PDM麦克风结构.工艺简单而大量应用,在使用中要注意这二者 ...
- kube-scheduler源码分析
kubernetes集群三步安装 kube-scheduler源码分析 关于源码编译 我嫌弃官方提供的编译脚本太麻烦,所以用了更简单粗暴的方式编译k8s代码,当然官方脚本在编译所有项目或者夸平台编译以 ...
- getpost请求案例
public class MainActivity extends AppCompatActivity { private ListView lv; @Override protected void ...
- 对博弈活动中蕴含的信息论原理的讨论,以及从熵角度看不同词素抽象方式在WEBSHELL文本检测中的效果区别
1. 从赛马说起 0x1:赛马问题场景介绍 假设在一场赛马中有m匹马参赛,令第i匹参赛马获胜的概率为pi,如果第i匹马获胜,那么机会收益为oi比1,即在第i匹马上每投资一美元,如果赢了,会得到oi美元 ...