【BZOJ3876】[AHOI2014&JSOI2014] 支线剧情(无源汇有上下界网络流)
大致题意: 有一张\(DAG\),经过每条边有一定时间,从\(1\)号点出发,随时可以返回\(1\)号点,求经过所有边的最短时间。
无源汇有上下界网络流
这是无源汇有上下界网络流的板子题。
可以先去看看这道题学习一下无源汇有上下界可行流的基本知识:【LOJ115】无源汇有上下界可行流。
我们对于题目中的每条边,在网络流图中连容量下界为\(1\)、容量上界为\(INF\)、代价为经过其时间的边。
对于除\(1\)号点外的每个点,在网络流图中将其向\(1\)连容量下界为\(0\)、上界为\(INF\)、代价为\(0\)的边。
然后,我们按照上面这题的套路处理一下建好网络流图。
接下来我们可以发现,这就是要求最小费用可行流。
那就把可行流中原本的最大流改成最小费用最大流即可。
代码
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 300
#define K 5000
#define INF 1e9
using namespace std;
int n;
template<int PS,int ES> class NetFlow//网络流
{
private:
#define add(x,y,f,c) (addE(x,y,f,c),addE(y,x,0,-c))
#define addE(x,y,f,c) (e[++ee].nxt=lnk[x],e[lnk[x]=ee].to=y,e[ee].F=f,e[ee].C=c)
#define El(x) ((((x)-1)^1)+1)
int Ct,S,T,ee,p[PS+5],lnk[PS+5],lst[PS+5],F[PS+5],C[PS+5],Iq[PS+5];queue<int> q;
struct edge {int to,nxt,F,C;}e[2*ES+5];
I bool SPFA()//SPFA找增广路
{
RI i,k;for(i=1;i<=n+2;++i) F[i]=C[i]=INF;C[S]=0,q.push(S),Iq[S]=1;
W(!q.empty())
{
for(Iq[k=q.front()]=0,q.pop(),i=lnk[k];i;i=e[i].nxt) e[i].F&&C[k]+e[i].C<C[e[i].to]&&
(
F[e[i].to]=min(F[k],e[i].F),C[e[i].to]=C[k]+e[i].C,lst[e[i].to]=i,
!Iq[e[i].to]&&(q.push(e[i].to),Iq[e[i].to]=1)
);
}return F[T]!=INF;
}
public:
I void Add(CI x,CI y,CI Mn,CI Mx,CI c) {add(x,y,Mx-Mn,c),p[x]-=Mn,p[y]+=Mn,Ct+=Mn*c;}//建边
I void Solve()
{
RI x;S=n+1,T=n+2;for(RI i=1;i<=n;++i) p[i]>0&&add(S,i,p[i],0),p[i]<0&&add(i,T,-p[i],0);//建边使其满足流量平衡
W(SPFA()) {Ct+=F[T]*C[T],x=T;W(x^S) e[lst[x]].F-=F[T],e[El(lst[x])].F+=F[T],x=e[El(lst[x])].to;}//跑最小费用最大流
printf("%d",Ct);//输出答案
}
};NetFlow<N+2,2*N+K> Fl;
int main()
{
RI i,x,y,z;for(scanf("%d",&n),i=1;i<=n;++i)
for(scanf("%d",&x);x;--x) scanf("%d%d",&y,&z),Fl.Add(i,y,1,INF,z);//对于边建边
for(i=2;i<=n;++i) Fl.Add(i,1,0,INF,0);return Fl.Solve(),0;//对于点建边
}
【BZOJ3876】[AHOI2014&JSOI2014] 支线剧情(无源汇有上下界网络流)的更多相关文章
- BZOJ 3876 支线剧情 有源汇有上下界最小费用可行流
题意: 给定一张拓扑图,每条边有边权,每次只能从第一个点出发沿着拓扑图走一条路径,求遍历所有边所需要的最小边权和 分析: 这道题乍一看,可能会想到什么最小链覆盖之类的,但是仔细一想,会发现不行,一是因 ...
- BZOJ3876 [Ahoi2014&Jsoi2014]支线剧情 【有上下界费用流】
题目 [故事背景] 宅男JYY非常喜欢玩RPG游戏,比如仙剑,轩辕剑等等.不过JYY喜欢的并不是战斗场景,而是类似电视剧一般的充满恩怨情仇的剧情.这些游戏往往 都有很多的支线剧情,现在JYY想花费最少 ...
- BZOJ3876[Ahoi2014&Jsoi2014]支线剧情——有上下界的最小费用最大流
题目描述 [故事背景] 宅男JYY非常喜欢玩RPG游戏,比如仙剑,轩辕剑等等.不过JYY喜欢的并不是战斗场景,而是类似电视剧一般的充满恩怨情仇的剧情.这些游戏往往 都有很多的支线剧情,现在JYY想花费 ...
- bzoj3876: [Ahoi2014&Jsoi2014]支线剧情
题意:给一幅图,从1开始,每条边有边权最少走一遍,可以在任意点退出,问最小花费 题解:上下界费用流,每个边都流一遍,然后为了保证流量平衡,新建源点汇点,跑费用流把流量平衡 /************* ...
- bzoj3876: [Ahoi2014&Jsoi2014]支线剧情(上下界费用流)
传送门 一道题让我又要学可行流又要学zkw费用流…… 考虑一下,原题可以转化为一个有向图,每次走一条路径,把每一条边都至少覆盖一次,求最小代价 因为一条边每走过一次,就要付出一次代价 那不就是费用流了 ...
- Reactor Cooling(无源汇有上下界网络流)
194. Reactor Cooling time limit per test: 0.5 sec. memory limit per test: 65536 KB input: standard o ...
- HDU 4940 Destroy Transportation system(无源汇有上下界最大流)
看不懂题解以及别人说的集合最多只有一个点..... 然后试了下题解的方法http://blog.sina.com.cn/s/blog_6bddecdc0102uzka.html 首先是无源汇有上下界最 ...
- SGU 194. Reactor Cooling(无源汇有上下界的网络流)
时间限制:0.5s 空间限制:6M 题意: 显然就是求一个无源汇有上下界的网络流的可行流的问题 Solution: 没什么好说的,直接判定可行流,输出就好了 code /* 无汇源有上下界的网络流 * ...
- hdu 4940 无源汇有上下界最大流
/* <img src="http://img.blog.csdn.net/20140823174212937?watermark/2/text/aHR0cDovL2Jsb2cuY3N ...
随机推荐
- 趣谈Linux操作系统学习笔记:第二十讲
一.引子 1.计算两方面的原因 2.内存管理机制 二.独享内存空间的原理 1.会议室和物理内存的关系 和会议室一样,内存都被分成一块块儿的,都编号了号,例如3F-10就是三楼十号会议室.内存页有这样一 ...
- Luogu P3600 随机数生成器
Luogu P3600 随机数生成器 题目描述 sol研发了一个神奇的随机数系统,可以自动按照环境噪音生成真·随机数. 现在sol打算生成\(n\)个\([1,x]\)的整数\(a_1...a_n\) ...
- 反射2-spring boot jpa 注入model即实现查询
spring boot jpa 使用方法:将对应的model类注入即可// fixed parameter type private Specification<TargetModel> ...
- Python的定时器与线程池
定时器执行循环任务: 知识储备 Timer(interval, function, args=None, kwargs=None) interval ===> 时间间隔 单位为s functio ...
- php laravel请求处理管道(装饰者模式)
laravel的中间件使用了装饰者模式.比如,验证维护模式,cookie加密,开启会话等等.这些处理有些在响应前,有些在响应之后,使用装饰者模式动态减少或增加功能,使得框架可扩展性大大增强. 接下来简 ...
- Containers vs Serverless:本质区别是什么?
在云计算领域,容器和无服务器计算已经占据了发展前列. 作者 | Emra Samdan 翻译 | bocloudresearch 一点历史 在不久以前,应用程序的开发.部署和维护要比现在复杂得多,耗时 ...
- [IDA] 将变量索引进行计算
按 k 键 [ebp+var+arg_0] - > [ebp+value]
- Object(Asp.NET核心机制内置对象汇总)
ASP.NET有个大佬,HttpContext(在.Net Core中依然是它)Http请求的上下文,任何一个环节都是需要HttpContext的,需要的参数信息,处理的中间结果,最终的结果,都是放在 ...
- C# 同步转异步 AutoResetEvent
当我们的程序运行时,调用了一段异步的逻辑A,这段异步的逻辑无法转化为同步(如动画.下载进度等) 而,我们又需要等待异步逻辑A处理完成,然后再执行其它逻辑B. AutoResetEvent 同步转异步 ...
- Python笔记:设计模式之模板方法模式
此模式通过一个模板方法来定义程序的框架或算法,通常模板方法定义在基类中,即原始的模板,然后子类就可以根据不同的需要实现或重写模板方法中的某些算法步骤或者框架的某部分,最后达到使用相同模板实现不同功能的 ...