1997: [Hnoi2010]Planar

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 2224  Solved: 824
[Submit][Status][Discuss]

Description

Input

Output

Sample Input

2
6 9
1 4
1 5
1 6
2 4
2 5
2 6
3 4
3 5
3 6
1 4 2 5 3 6
5 5
1 2
2 3
3 4
4 5
5 1
1 2 3 4 5

Sample Output

NO
YES

HINT

 

Source

  为了做这道题我生生看了大半个小时的各种不靠谱的平面图课件,然后题解告诉我平面图的性质就用到了m>n*3-6不是平面图而且他只是用来剪枝的?Exucse me?
  然后又发现这道题是2-SAT,一个坑了几乎所有NOI2017选手的知识点,然后又斯巴达了一个多小时的2-SAT,回过头来却发现我连如何判断两条边是否会相交都不懂。QAQ……
  然后赶紧向大佬求助,既然这道题把环都给我们了,那么只要两个线段的四个端点是交错排列的那么他们如果把它们同时放在圆内或圆外他们就会相交。这也就是为什么要用2-SAT了。我们可以把它看作2-SAT的一个经典问题:n各组,每组两个人,其中有些人和别的组里的人不能一起选,每个组里必须选一个人,问能否找到合法方案。在这道题里,每一个不在圆上的线段就是我们的组,两个人就是在圆内还是圆外,跑一遍2-SAT即可。
 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<string>
#include<queue>
#define N 300
using namespace std;
struct ro{
int to;
int next;
}road[**];
int t,n,m,zz,a[],f[][],pos[N],zz1;
void build(int x,int y)
{
zz++;
road[zz].to=y;
road[zz].next=a[x];
a[x]=zz;
}
int dfn[],low[],zz2,top,st[],bel[],zz3;
bool rd[],rd2[];
void tar(int x)
{
zz2++;
dfn[x]=low[x]=zz2;
top++;
st[top]=x;
rd[x]=rd2[x]=;
for(int i=a[x];i>;i=road[i].next)
{
int y=road[i].to;
if(!rd2[y])
{
tar(y);
low[x]=min(low[x],low[y]);
}
else if(rd[y])
{
low[x]=min(dfn[y],low[x]);
}
}
if(dfn[x]==low[x])
{
zz3++;
int v;
do{
v=st[top];
top--;
rd[v]=;
bel[v]=zz3;
}while(dfn[v]!=low[v]);
}
}
int main(){
scanf("%d",&t);
while(t--)
{
memset(a,,sizeof(a));
top=;
memset(rd2,,sizeof(rd2));
zz3=zz2=;
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
zz=zz1=;
memset(bel,,sizeof(bel));
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d%d",&f[i][],&f[i][]);
}
for(int i=;i<=n;i++)
{
int x;
scanf("%d",&x);
pos[x]=i;
}
if(n*-<m)
{
printf("NO\n");
continue;
}
for(int i=;i<=m;i++)
{
int fr=f[i][],to=f[i][];
fr=pos[fr],to=pos[to];
if(fr>to)swap(fr,to);
if(to-fr==||(to==n&&fr==))continue;
zz1++;
f[zz1][]=fr,f[zz1][]=to;
}
m=zz1;
for(int i=;i<=m;i++)
{
for(int j=i+;j<=m;j++)
{
if(f[i][]<f[j][]&&f[i][]<f[j][]&&f[i][]>f[j][])
{
build(i*,j*-);
build(j*-,i*);
build(j*,i*-);
build(i*-,j*);
}
else if(f[j][]<f[i][]&&f[j][]<f[i][]&&f[i][]<f[j][])
{
build(i*,j*-);
build(j*-,i*);
build(j*,i*-);
build(i*-,j*);
}
}
}
for(int i=;i<=*m;i++)
{
if(!rd2[i])
{
tar(i);
}
}
bool yx=;
for(int i=;i<=m;i++)
{
if(bel[i*]==bel[i*-])
{
yx=;
break;
}
}
if(yx)
{
printf("YES\n");
}
else
{
printf("NO\n");
}
}
return ;
}

Bzoj 1997 [Hnoi2010]Planar题解的更多相关文章

  1. BZOJ 1997: [Hnoi2010]Planar( 2sat )

    平面图中E ≤ V*2-6.. 一个圈上2个点的边可以是在外或者内, 经典的2sat问题.. ----------------------------------------------------- ...

  2. [BZOJ 1997][HNOI2010]Planar(2-SAT)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1997 分析: 考虑每条边是在圈子里面还是圈子外面 所以就变成了2-SAT判定问题了= ...

  3. bzoj 1997 [Hnoi2010]Planar——2-SAT+平面图的一个定理

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1997 平面图的一个定理:若边数大于(3*点数-6),则该图不是平面图. 然后就可以2-SAT ...

  4. bzoj 1997: [Hnoi2010]Planar

    #include<cstdio> #include<cstring> #include<iostream> #define M 20005 #define N 20 ...

  5. bzoj 1997: [Hnoi2010]Planar【瞎搞+黑白染色】

    脑补一下给出的图:一个环,然后有若干连接环点的边,我们就是要求这些边不重叠 考虑一下不重叠的情况,两个有交边一定要一个在环内一个在环外,所以把相交的边连边,然后跑黑白染色看是否能不矛盾即可(可能算个2 ...

  6. 1997: [Hnoi2010]Planar

    1997: [Hnoi2010]Planar 链接 分析: 首先在给定的那个环上考虑进行操作,如果环内有有两条边相交,那么可以把其中的一条放到环的外面去.所以转换为2-sat问题. 像这样,由于1-4 ...

  7. BZOJ1997:[HNOI2010]PLANAR——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=1997 https://www.luogu.org/problemnew/show/P3209 若能 ...

  8. bzoj千题计划231:bzoj1997: [Hnoi2010]Planar

    http://www.lydsy.com/JudgeOnline/problem.php?id=1997 如果两条边在环内相交,那么一定也在环外相交 所以环内相交的两条边,必须一条在环内,一条在环外 ...

  9. [bzoj1997][Hnoi2010]Planar(2-sat||括号序列)

    开始填连通分量的大坑了= = 然后平面图有个性质m<=3*n-6..... 由平面图的欧拉定理n-m+r=2(r为平面图的面的个数),在极大平面图的情况可以代入得到m=3*n-6. 网上的证明( ...

随机推荐

  1. Delphi7程序调用C#写的DLL解决办法

     近来,因工作需要,必须解决Delphi7写的主程序调用C#写的dll的问题.在网上一番搜索,又经过种种试验,最终证明有以下两种方法可行:    编写C#dll的方法都一样,首先在vs2005中创建一 ...

  2. HTTP的请求方法一共有9种,有OPTIONS, HEAD, GET, POST等等(消息头有图,十分清楚)

    请求方法:指定了客户端想对指定的资源/服务器作何种操作 下面我们介绍HTTP/1.1中可用的请求方法: [GET:获取资源]     GET方法用来请求已被URI识别的资源.指定的资源经服务器端解析后 ...

  3. svn文件合并

     cd 目标目录svn merge -r 开始版本号:结束版本号 源目录或单个文件URL或svn merge 源目录或单个文件URL

  4. [铁人赛] ASP.NET Core 2 系列- 从头开始

    来势汹汹的.NET Core似乎要取代.NET Framework,ASP.NET也随之发布.NET Core版本.虽说名称沿用ASP.NET,但相较于ASP.NET确有许多架构上的差异,可说是除了名 ...

  5. Qt 5.6.2 静态编译(VS2013 x86 target xp openssl icu webkit)

    在去年4月份的时候,我写过一篇动态编译Qt5.6.0的文章,当时是为了解决webkit不能在winxp下面跑的问题,动态编译有一个缺点,就是发布的时候,要携带一大堆dll,使安装包的体积增大.而静态编 ...

  6. c# 查询本机可用的代理ip

    现在有很多网站都提供免费的代理ip,但是你会发现很多网站显示的可以用的 ,在自己电脑上是用不了,写个小代码提取出自己电脑上可以用的代理,没什么技术含量,只是为了记录一下 string strUrl = ...

  7. C++大小写转换和性能(C语言,C++,API,STL一共4种方法)

    大小写转换和性能 前言 本文主要讨论最基本的一些大小写转换函数和API,不讨论一些常见的字符串程序库里面的大小写转换接口,另外本文的落脚点是这些转换函数的性能和日常开发中遇到的一些问题. 不考虑范围 ...

  8. x64系统的判断和x64下文件和注册表访问的重定向(举例了GetProcAddress后转成函数指针的用法)

    判断一个32位应用程序是否运行在x64系统下,可以使用下面的代码: BOOL IsX64System() { BOOL bIsWow64 = FALSE; typedef BOOL (WINAPI * ...

  9. C语言实现常用排序算法——冒泡排序

    原理:比较临近的两个元素,只要不符合顺序就进行交换:要点:1.不要越界:2.遍历一遍以后最大的元素就会到最后,所以下次遍历就不用遍历整个数组 void bubble_sort(int a[],int ...

  10. 解决npm install卡住不动的小尴尬

    npm install卡顿问题记录 遇到的问题 npm install -g @angular/cli 安装angular cli工具时,发现进度条一直卡住不动,相信很多朋友也遇到过.原因应该是国内的 ...