[Poi2012]Festival 题解
[Poi2012]Festival
时间限制: 1 Sec 内存限制: 64 MB
题目描述
有n个正整数X1,X2,...,Xn,再给出m1+m2个限制条件,限制分为两类:
1. 给出a,b (1<=a,b<=n),要求满足Xa + 1 = Xb
2. 给出c,d (1<=c,d<=n),要求满足Xc <= Xd
在满足所有限制的条件下,求集合{Xi}大小的最大值。
输入
第一行三个正整数n, m1, m2 (2<=n<=600, 1<=m1+m2<=100,000)。
接下来m1行每行两个正整数a,b (1<=a,b<=n),表示第一类限制。
接下来m2行每行两个正整数c,d (1<=c,d<=n),表示第二类限制。
输出
一个正整数,表示集合{Xi}大小的最大值。
如果无解输出NIE。
样例输入
4 2 2 1 2 3 4 1 4 3 1
样例输出
3
提示
|X3=1, X1=X4=2, X2=3
这样答案为3。容易发现没有更大的方案。
先膜拜一下Q某犇,他给我讲的这道题。
这道题基本一看就是差分约束,建边已经是套路了,问题在于如何乱搞找出正解。首先,我们可以看出每一个强联通分量对答案的贡献与其他强联通分量无关,因为他们之间建边的话只能是某几个单向的0边,又因为Xi无限制,所以完全是可以对每个强联通分量单独结算在合并的。
那么我们怎么求在单个强联通分量的最大大小呢?floyd最长路就好了。反正n<=600这道题想卡你的话貌似也不太容易,因此我们大可将每个强联通分量中的点建一个链表,复杂度就大大降低了。
而有没有接嘛,只要看跑完floyd之后dis[i][i]是否为0就好了。
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#include<queue>
#include<string>
#include<cmath>
#define N 750
using namespace std;
int n,m1,m2;
int zz,dis[N][N];
bool rz[N],rz2[N];
int dfn[N],low[N],st[N],zz2,top;
int be[N],zz3,pre[N];
int mx[N];
void tar(int x){
zz2++;
dfn[x]=low[x]=zz2;
rz[x]=rz2[x]=;
top++;
st[top]=x;
for(int i=;i<=n;i++)
{
if(dis[x][i]!=dis[][]&&i!=x)
{
if(!rz2[i])
{
tar(i);
low[x]=min(low[x],low[i]);
}
else if(rz[i])
{
low[x]=min(low[x],dfn[i]);
}
}
}
if(low[x]==dfn[x])
{
zz3++;
int v,la=;
do{
v=st[top];
top--;
rz[v]=;
if(!be[zz3])
be[zz3]=v;
pre[la]=v;
la=v;
}while(dfn[v]!=low[v]);
}
}
int main(){
memset(pre,-,sizeof(pre));
scanf("%d%d%d",&n,&m1,&m2);
memset(dis,-0xf,sizeof(dis));
for(int i=;i<=m1;i++)
{
int x,y;
scanf("%d%d",&x,&y);
dis[x][y]=max(dis[x][y],);
dis[y][x]=max(-,dis[y][x]);
}
for(int i=;i<=m2;i++)
{
int x,y;
scanf("%d%d",&x,&y);
dis[x][y]=max(dis[x][y],);
}
for(int i=;i<=n;i++)
{
if(!rz2[i])
{
tar(i);
}
} for(int i=;i<=n;i++)
{
dis[i][i]=;
}
for(int o=;o<=zz3;o++)
{
for(int k=be[o];k!=-;k=pre[k])
{
for(int i=be[o];i!=-;i=pre[i])
{
for(int j=be[o];j!=-;j=pre[j])
{
if(abs(dis[i][k])<=n&&abs(dis[k][j])<=n)
dis[i][j]=max(dis[i][j],dis[i][k]+dis[k][j]);
}
}
}
for(int i=be[o];i!=-;i=pre[i])
{
for(int j=be[o];j!=-;j=pre[j])
mx[o]=max(mx[o],abs(dis[i][j]));
}
}
for(int i=;i<=n;i++)
{
if(dis[i][i]!=)
{
printf("NIE\n");
exit();
}
} int ans=;
for(int i=;i<=zz3;i++)
ans+=mx[i]+;
printf("%d\n",ans);
// while(1);
return ;
}
[Poi2012]Festival 题解的更多相关文章
- [BZOJ2788][Poi2012]Festival
2788: [Poi2012]Festival Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 187 Solved: 91[Submit][Statu ...
- [Poi2012]Festival 差分约束+tarjan
差分约束建图,发现要在每个联通块里求最长路,600,直接O(n3) floyed #include<cstdio> #include<cstring> #include< ...
- Hdoj 1850.Being a Good Boy in Spring Festival 题解
Problem Description 一年在外 父母时刻牵挂 春节回家 你能做几天好孩子吗 寒假里尝试做做下面的事情吧 陪妈妈逛一次菜场 悄悄给爸爸买个小礼物 主动地 强烈地 要求洗一次碗 某一天早 ...
- [POI2012]Festival
题目大意: 有$n$个正整数$x_1,x_2,\ldots,x_n$,再给出一些限制条件,限制条件分为两类: 1.给出$A,B$,要求满足$X_A+1=X_B$: 2.给出$C,D$,要求满足$X_C ...
- bzoj 2788 [Poi2012]Festival 差分约束+tarjan+floyd
题目大意 有n个正整数X1,X2,...,Xn,再给出m1+m2个限制条件,限制分为两类: 1.给出a,b (1<=a,b<=n),要求满足Xa + 1 = Xb 2.给出c,d (1&l ...
- AT2202 硬度フェスティバル / Kode Festival 题解
Content 有 \(2^n\) 块石头,第 \(i\) 块石头硬度为 \(a_i\).重复执行以下操作直到只剩下一块石头为止: 让当前编号为 \((1,2)\).\((3,4)\).-- 的石头互 ...
- POI2012题解
POI2012题解 这次的完整的\(17\)道题哟. [BZOJ2788][Poi2012]Festival 很显然可以差分约束建图.这里问的是变量最多有多少种不同的取值. 我们知道,在同一个强连通分 ...
- Noip前的大抱佛脚----赛前任务
赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
随机推荐
- Android微信支付SDK
App对接微信调起微信支付需要在微信平台注册,鉴别的标识就是App的包名,所以将申请的包名单独打包成一个Apk文件,则在其他的App调起此Apk的时候同样可以起到调用微信支付的功能.这样就实现了调起微 ...
- mingw 构建 mysql-connector-c-6.1.9记录(26种不同的编译错误,甚至做了一个windows系统返回错误码与System V错误码的一个对照表)
http://www.cnblogs.com/oloroso/p/6867162.html
- JS引用路劲为什么在前面加上两个斜杠
原文:JS引用路劲为什么在前面加上两个斜杠 //表示同协议,一般现在用在https跨域名地址情况下.比如第三方统计代码的引入,用//就不用很麻烦地区分https还是http,也不用担心https下降到 ...
- ARTS 1.21 - 1.25
每周一个 Algorithm,Review 一篇英文文章,总结一个工作中的技术 Tip,以及 Share 一个传递价值观的东西! Algorithm: 学习算法 题目:3Sum Closest 解题过 ...
- SimpleMembershipProvider 的 MySql 实现
认 证我一直用的是微软的 Membership 体系,看 MySql 也实现了对应的 Provider,在新建立了一个 MVC4 项目后,把 Provider 一改就直接启动,然后就出错了.异常是“T ...
- MJPhotoBrowser 用法
一.使用方法: #import "MJPhotoBrowser.h" #import "MJPhoto.h" - (void)tapPhoto:(UIT ...
- javascript 实现ajax
AJAX 英文名称 Asynchronous JavaScript and XML即异步的 JavaScript 和 XML AJAX 是与服务器交换数据并更新部分网页一门无刷新技术构建自己的ajax ...
- git初学【常用命令、上传项目到码云或从码云拉取、克隆项目】
1.下载git.https://git-scm.com/ 注册码云:https://gitee.com/2.安装git: 默认安装即可: 安装完成之后打开git bash进行最后一步配置 输 ...
- mpvue 试水的一天
小程序经过了将近两年的锤炼,现在出现了许许多多的框架,来帮助我们进行快速开发,最近可能迷上了mpvue这个框架,所以就用公司的项目练练手. mpvue是用vue作为基础骨架的,所以他非常想vue,所以 ...
- MCtalk对话抱抱星英语:从Diss在线英语教学乱象到回归教育本原
在百度搜索输入“在线英语”四字,清一色的线上英语培训品牌琳琅满目,“免费英语学习”.“外教口语一对一培训”.“四级听力”.“专属外教”,竞争之激烈可见一斑,创业公司绞尽脑汁挖掘细分市场,试图在一片红海 ...