题目描述

一个无向连通图,顶点从1编号到N,边从1编号到M。 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。

输入输出格式

输入格式:

第一行是正整数N和M,分别表示该图的顶点数
和边数,接下来M行每行是整数u,v(1<=u,v<=N),表示顶点u与顶点v之间存在一条边。
输入保证30%的数据满足N<=10,100%的数据满足2<=N<=500且是一个无向简单连通图。

输出格式:

仅包含一个实数,表示最小的期望值,保留3位小数。

输入输出样例

输入样例#1:

3 3
2 3
1 2
1 3
输出样例#1:

3.333

说明

边(1,2)编号为1,边(1,3)编号2,边(2,3)编号为3。


题解

  期望dp。

  贪心地想,我们肯定要往那个期望到达次数最大的边赋最小的权值;

  所以问题转化成了求边的期望到达次数;

  我们发现一条边连着唯一的两个点,我们要知道边的期望,首先要知道到达每个点的期望次数;

  我们设f[i]表示第i个点的期望到达次数,即f[i] = ∑(f[to[i]] * deg[to[i]]) ,deg[i]表示一个点的度数;

  这样我们发现可以高斯消元解出;要注意的是1号点的期望还得加上1因为从他开始必定经过;

  然后求g[i],即边i的期望到达次数,g[i] = f[l[i]]/deg[l[i]] + f[r[i]]/deg[r[i]],l r表示这个边链接的两个点;

  要注意如果是n号点的话,就不用考虑,因为到了n点就不会继续游走了;

  然后就贪心地赋边权;


Code

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
#define eps 1e-8 int n, m;
struct edge
{
int from, to;
int nxt;
}ed[];
int deg[], head[];
int cnt;
int fr[], tt[];
inline void add(int x, int y){ed[++cnt] = (edge){x, y, head[x]};head[x] = cnt;} double g[];
double a[][];
double ans; inline void Gauss_()
{
for (register int i = ; i < n ; i ++)
{
int pivot = i ;
for (register int j = i + ; j < n ; j ++)
{
if (fabs(a[j][i] - a[pivot][i]) <= eps) pivot = j;
}
if (pivot != i)
for (register int j = ; j <= n ; j ++)
swap(a[i][j], a[pivot][j]);
for (register int j = n ; j >= i ; j --) a[i][j] /= a[i][i];
for (register int j = ; j < n ; j ++)
if (i != j)
for (register int k = n ; k >= i ; k --)
a[j][k] -= a[j][i] * a[i][k];
}
} int main()
{
scanf("%d%d", &n, &m);
for (register int i = ; i <= m; i ++)
{
int x, y;
scanf("%d%d", &x, &y);
deg[x]++, deg[y]++;
fr[i] = x, tt[i] = y;
add(x, y);
add(y, x);
} a[][n] = ;
for (register int i = ; i < n; i ++)
{
a[i][i] = ;
for (register int j = head[i]; j; j = ed[j].nxt)
{
int to = ed[j].to ;
if (to != n) a[i][to] = -1.0/deg[to];
}
} Gauss_(); for (register int i = ; i <= m ; i ++)
{
if (fr[i] != n )
g[i] += a[fr[i]][n] * (1.0 / deg[fr[i]]) ;
if (tt[i] != n)
g[i] += a[tt[i]][n] * (1.0 / deg[tt[i]]);
} sort(g + , g + + m);
for (register int i = ; i <= m ; i ++)
ans += (m - i + ) * 1.0 * g[i];
printf("%.3lf", ans); return ; }

[HNOI2013][BZOJ3143] 游走 - 高斯消元的更多相关文章

  1. 【BZOJ3143】【HNOI2013】游走 高斯消元

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3143 我们令$P_i$表示从第i号点出发的期望次数.则$P_n$显然为$0$. 对于$P ...

  2. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  3. bzoj 3143: [Hnoi2013]游走 高斯消元

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1026  Solved: 448[Submit][Status] ...

  4. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

  5. Luogu3232 HNOI2013 游走 高斯消元、期望、贪心

    传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次 ...

  6. 【xsy1201】 随机游走 高斯消元

    题目大意:你有一个$n*m$的网格(有边界),你从$(1,1)$开始随机游走,求走到$(n,m)$的期望步数. 数据范围:$n≤10$,$m≤1000$. 我们令 $f[i][j]$表示从$(1,1) ...

  7. BZOJ3143:[HNOI2013]游走(高斯消元)

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

  8. 【BZOJ3143】[Hnoi2013]游走 期望DP+高斯消元

    [BZOJ3143][Hnoi2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 ...

  9. 【BZOJ3143】【HNOI2013】游走 && 【BZOJ3270】博物馆 【高斯消元+概率期望】

    刚学完 高斯消元,我们来做几道题吧! T1:[BZOJ3143][HNOI2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小 ...

随机推荐

  1. FlutterGo 后端知识点提炼:midway+Typescript+mysql(sequelize)

    前言 关于 FlutterGo 或许不用太多介绍了. 如果有第一次听说的小伙伴,可以移步FlutterGo官网查看下简单介绍. FlutterGo 在这次迭代中有了不少的更新,笔者在此次的更新中,负责 ...

  2. C# 10分钟入门基于WebOffice实现在线编辑文档,实时保存到服务器(所有office,兼容WPS)

    今天,他来了(weboffice在线编辑文档). 上次写了一个在线预览的博,当然,效果并不是太理想,但是紧急解决了当时的问题. 后来,小编重新查找资料,求助大牛,终于使用新的方式替换了之前的low方法 ...

  3. 有关Spring事务,看这一篇就足够了

    本文将按照声明式事务的五个特性进行介绍: 事务传播机制 事务隔离机制 只读 事务超时 回滚规则 Spring事务传播机制 事务的特性 原子性(Atomicity):事务是一个原子操作,由一系列动作组成 ...

  4. 初学Spring的感觉

    1.使用接口 不同的类实现同一接口后都会变成同一类型的类.   spring作业1的思路 lab1: 建立一个有一个输出方法的接口类|并建一个英语类和一个数学类实现该接口.   这两个实现类都重写了那 ...

  5. [LeetCode] 由 “打印机任务队列" 所想

    一.这是个基础问题 Ref: Python之队列模拟算法(打印机问题)[首先研究这个问题作为开始] 任务队列 定义一个任务队列,来管理任务,而无需关心队列的”任务类型". # 自定义队列类 ...

  6. 如何更规范化编写Java 代码

    如何更规范化编写Java 代码 Many of the happiest people are those who own the least. But are we really so happy ...

  7. 如何在女友卸妆后,正确的找到她?---java中使用反射的小秘密

    故事背景 小白是个程序猿,刚毕业两年,最近交了一个女朋友,是同事介绍的.女朋友和闺蜜住在一起.小白早上很早接到女朋友电话,昨天她的一个文件错放到了他的电脑包,希望他帮忙送到她住的地方,她今天要向她bo ...

  8. Redis 相关功能和实用命令(五)

    慢查询原因分析 由于 Redis 是单线程的,它内部维护了一个命令队列,所以当有耗时的命令出现时,比如 keys *,后面的命令会被阻塞,通查查出慢查询可以对服务进一步优化. 设置慢查询阀值:默认10 ...

  9. map转换成com.google.gson.JsonObject

    String json =new Gson().toJson(map); JsonObject jsonObject =new JsonParser().parse(json).getAsJsonOb ...

  10. EL十一大内置对象

    这是一个内置对象可以直接拿来使用,不需要再去声明. 1.读取页面上下文: (1)pageContext对象: 获取URL和URI: <body> URI:${pageContext.req ...