题目描述

一个无向连通图,顶点从1编号到N,边从1编号到M。 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。

输入输出格式

输入格式:

第一行是正整数N和M,分别表示该图的顶点数
和边数,接下来M行每行是整数u,v(1<=u,v<=N),表示顶点u与顶点v之间存在一条边。
输入保证30%的数据满足N<=10,100%的数据满足2<=N<=500且是一个无向简单连通图。

输出格式:

仅包含一个实数,表示最小的期望值,保留3位小数。

输入输出样例

输入样例#1:

3 3
2 3
1 2
1 3
输出样例#1:

3.333

说明

边(1,2)编号为1,边(1,3)编号2,边(2,3)编号为3。


题解

  期望dp。

  贪心地想,我们肯定要往那个期望到达次数最大的边赋最小的权值;

  所以问题转化成了求边的期望到达次数;

  我们发现一条边连着唯一的两个点,我们要知道边的期望,首先要知道到达每个点的期望次数;

  我们设f[i]表示第i个点的期望到达次数,即f[i] = ∑(f[to[i]] * deg[to[i]]) ,deg[i]表示一个点的度数;

  这样我们发现可以高斯消元解出;要注意的是1号点的期望还得加上1因为从他开始必定经过;

  然后求g[i],即边i的期望到达次数,g[i] = f[l[i]]/deg[l[i]] + f[r[i]]/deg[r[i]],l r表示这个边链接的两个点;

  要注意如果是n号点的话,就不用考虑,因为到了n点就不会继续游走了;

  然后就贪心地赋边权;


Code

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
#define eps 1e-8 int n, m;
struct edge
{
int from, to;
int nxt;
}ed[];
int deg[], head[];
int cnt;
int fr[], tt[];
inline void add(int x, int y){ed[++cnt] = (edge){x, y, head[x]};head[x] = cnt;} double g[];
double a[][];
double ans; inline void Gauss_()
{
for (register int i = ; i < n ; i ++)
{
int pivot = i ;
for (register int j = i + ; j < n ; j ++)
{
if (fabs(a[j][i] - a[pivot][i]) <= eps) pivot = j;
}
if (pivot != i)
for (register int j = ; j <= n ; j ++)
swap(a[i][j], a[pivot][j]);
for (register int j = n ; j >= i ; j --) a[i][j] /= a[i][i];
for (register int j = ; j < n ; j ++)
if (i != j)
for (register int k = n ; k >= i ; k --)
a[j][k] -= a[j][i] * a[i][k];
}
} int main()
{
scanf("%d%d", &n, &m);
for (register int i = ; i <= m; i ++)
{
int x, y;
scanf("%d%d", &x, &y);
deg[x]++, deg[y]++;
fr[i] = x, tt[i] = y;
add(x, y);
add(y, x);
} a[][n] = ;
for (register int i = ; i < n; i ++)
{
a[i][i] = ;
for (register int j = head[i]; j; j = ed[j].nxt)
{
int to = ed[j].to ;
if (to != n) a[i][to] = -1.0/deg[to];
}
} Gauss_(); for (register int i = ; i <= m ; i ++)
{
if (fr[i] != n )
g[i] += a[fr[i]][n] * (1.0 / deg[fr[i]]) ;
if (tt[i] != n)
g[i] += a[tt[i]][n] * (1.0 / deg[tt[i]]);
} sort(g + , g + + m);
for (register int i = ; i <= m ; i ++)
ans += (m - i + ) * 1.0 * g[i];
printf("%.3lf", ans); return ; }

[HNOI2013][BZOJ3143] 游走 - 高斯消元的更多相关文章

  1. 【BZOJ3143】【HNOI2013】游走 高斯消元

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3143 我们令$P_i$表示从第i号点出发的期望次数.则$P_n$显然为$0$. 对于$P ...

  2. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  3. bzoj 3143: [Hnoi2013]游走 高斯消元

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1026  Solved: 448[Submit][Status] ...

  4. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

  5. Luogu3232 HNOI2013 游走 高斯消元、期望、贪心

    传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次 ...

  6. 【xsy1201】 随机游走 高斯消元

    题目大意:你有一个$n*m$的网格(有边界),你从$(1,1)$开始随机游走,求走到$(n,m)$的期望步数. 数据范围:$n≤10$,$m≤1000$. 我们令 $f[i][j]$表示从$(1,1) ...

  7. BZOJ3143:[HNOI2013]游走(高斯消元)

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

  8. 【BZOJ3143】[Hnoi2013]游走 期望DP+高斯消元

    [BZOJ3143][Hnoi2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 ...

  9. 【BZOJ3143】【HNOI2013】游走 && 【BZOJ3270】博物馆 【高斯消元+概率期望】

    刚学完 高斯消元,我们来做几道题吧! T1:[BZOJ3143][HNOI2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小 ...

随机推荐

  1. C++输入输出常用格式(cin,cout,stringstream)

    输入格式 1.cin>>a; 最基本的格式,适用于各种类型.会过滤掉不可见字符例如空格,TAB,回车等 2.cin>>noskipws>>ch[i]; 使用了 no ...

  2. Xshell无法连接到虚拟机Linux系统(桥接方式)

    一.  查看主机上网网卡网络配置信息 1.  查看本机所用网卡名称(适用于win10系统) 操作步骤: 1)  状态栏右键“WiFi连接图标” 2)  点击“打开“网络和Internet”设置” 3) ...

  3. 操作DOM会影响WEB应用的性能

    平时在工作中,要优化自己开发的WEB应用的性能,一般是遵循以下几个原则: 1.减少网络请求. 2.压缩.合并静态资源文件,以此来减轻网络传输的带宽压力和资源消耗. 3.代码逻辑层面上的性能优化.比如减 ...

  4. Xampp error:Port 80 in use by "Unable to open process" with PID 4

    今天打开Apache的时候报错: Port 80 in use by "Unable to open process" with PID 4 通过点击与“Apache”模块同一行上 ...

  5. Linux常用命令大全(全全全!!!)

    Linux常用命令大全(非常全!!!) 最近都在和Linux打交道,感觉还不错.我觉得Linux相比windows比较麻烦的就是很多东西都要用命令来控制,当然,这也是很多人喜欢linux的原因,比较短 ...

  6. python Fatal error in launcher

    1.之前电脑上只安装了一个python2.7时pip install virtualenv安装了virtualenv,后来又装了py3.6.最近想做断网环境下的虚拟环境快速移植发现查看virtuale ...

  7. Java的EOF标识?

     这篇是关于JAVA中EOF标识的讲解,之前在工作上碰到过一个问题,有人问过,不能通过判断EOF来知道文件有没有读取完毕吗?其实,还真不能.  直接从JDK接口文档入手,以FileInputStrea ...

  8. hadoop之mapreduce详解(优化篇)

    一.概述 优化前我们需要知道hadoop适合干什么活,适合什么场景,在工作中,我们要知道业务是怎样的,能才结合平台资源达到最有优化.除了这些我们当然还要知道mapreduce的执行过程,比如从文件的读 ...

  9. Angular 常用命令行

    1. ng -v 查看angular-cli是否安装成功.angular-cli的版本号 2. ng new 项目名称 新建angular项目 3. ng g class 类名 动态生成类文件: 4. ...

  10. 在 Cocos Creator 中使用 Protobufjs(一)

    一. 环境准备 我一直在探索Cocos H5正确的开发姿势,目前做javascript项目已经离不开 nodejs.npm或grunt等脚手架工具了. 1.初始化package.json文件 npm ...