【洛谷P3329】 [ZJOI2011]最小割(最小割树)
题意:
给出一个无向图,之后有\(q,q\leq 30\)组询问,每组询问有一个\(x\),回答有多少点对\((a,b)\)其\(a-b\)最小割不超过\(x\)。
思路:
这个题做法要最小割树...这个东西大概就是对于当前点集任意选择两个点\(s,t\)作为源点和汇点,然后求出当前最小割,之后两个集合连边为最小割权值;然后两个集合递归下去处理。
显然最后集合中只会存在一个元素,那么最后形成的就是一颗树。
最小割树有一个性质:对于树上\(u,v\)两点,其路径上的边权最小值即为两点的最小割。
这个感谢理解一下?
最后处理的时候每次将点按照集合重排序然后递归下去,另外注意一下更新\(ans\)时的枚举范围,这时两个集合中的任意一对点的最小割都不会超过\(d\)。
直观理解最小割树参见:传送门
代码如下:
/*
* Author: heyuhhh
* Created Time: 2019/10/31 21:20:48
*/
#include <bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 155, M = 10005;
#define _S heyuhhh
template <class T>
struct Dinic{
struct Edge{
int v, next;
T flow, w;
Edge(){}
Edge(int v, int next, T flow, T w) : v(v), next(next), flow(flow), w(w) {}
}e[M << 1];
int head[N], tot;
int dep[N];
bool vis[N];
void init() {
memset(head, -1, sizeof(head)); tot = 0;
}
void adde(int u, int v, T w, T rw = 0) {
e[tot] = Edge(v, head[u], w, w);
head[u] = tot++;
e[tot] = Edge(u, head[v], rw, rw);
head[v] = tot++;
}
bool BFS(int _S, int _T) {
memset(dep, 0, sizeof(dep));
queue <int> q; q.push(_S); dep[_S] = 1;
while(!q.empty()) {
int u = q.front(); q.pop();
for(int i = head[u]; ~i; i = e[i].next) {
int v = e[i].v;
if(!dep[v] && e[i].flow > 0) {
dep[v] = dep[u] + 1;
q.push(v);
}
}
}
return dep[_T] != 0;
}
T dfs(int _S, int _T, T a) {
T flow = 0, f;
if(_S == _T || a == 0) return a;
for(int i = head[_S]; ~i; i = e[i].next) {
int v = e[i].v;
if(dep[v] != dep[_S] + 1) continue;
f = dfs(v, _T, min(a, e[i].flow));
if(f) {
e[i].flow -= f;
e[i ^ 1].flow += f;
flow += f;
a -= f;
if(a == 0) break;
}
}
if(!flow) dep[_S] = -1;
return flow;
}
T dinic(int _S, int _T) {
T max_flow = 0;
while(BFS(_S, _T)) max_flow += dfs(_S, _T, INF);
return max_flow;
}
void color(int u) {
vis[u] = true;
for(int i = head[u]; i != -1; i = e[i].next) {
int v = e[i].v;
if(vis[v] == false && e[i].flow) color(v);
}
}
void pre() {
memset(vis, 0, sizeof(vis));
for(int i = 0; i < tot; i++) e[i].flow = e[i].w;
}
};
Dinic <int> solver;
int n, m;
int c[N][N];
int a[N], ans[N][N];
int tmp1[N], tmp2[N];
void solve(int l, int r) {
if(l >= r) return;
solver.pre();
int S = a[l], T = a[r];
int d = solver.dinic(S, T);
solver.color(S);
for(int i = 1; i <= n; i++) if(solver.vis[i]) {
for(int j = 1; j <= n; j++) if(!solver.vis[j]) {
ans[i][j] = ans[j][i] = min(ans[i][j], d);
}
}
int t1 = 0, t2 = 0;
for(int i = l; i <= r; i++) {
if(solver.vis[a[i]]) tmp1[++t1] = a[i];
else tmp2[++t2] = a[i];
}
for(int i = l; i <= l + t1 - 1; i++) a[i] = tmp1[i - l + 1];
for(int i = l + t1; i <= r; i++) a[i] = tmp2[i - t1 - l + 1];
solve(l, l + t1 - 1); solve(l + t1, r);
}
void run(){
cin >> n >> m;
solver.init();
memset(c, 0, sizeof(c));
memset(ans, INF, sizeof(ans));
for(int i = 1; i <= m; i++) {
int u, v, w; cin >> u >> v >> w;
c[u][v] += w;
c[v][u] = c[u][v];
}
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
if(c[i][j]) solver.adde(i, j, c[i][j]);
}
}
for(int i = 1; i <= n; i++) a[i] = i;
solve(1, n);
int q; cin >> q;
for(int k = 1; k <= q; k++) {
int x; cin >> x;
int res = 0;
for(int i = 1; i <= n; i++)
for(int j = i + 1; j <= n; j++)
if(ans[i][j] <= x) ++res;
cout << res << '\n';
}
cout << '\n';
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
int T; cin >> T;
while(T--) run();
return 0;
}
【洛谷P3329】 [ZJOI2011]最小割(最小割树)的更多相关文章
- 洛谷P3377 【模板】左偏树(可并堆) 题解
作者:zifeiy 标签:左偏树 这篇随笔需要你在之前掌握 堆 和 二叉树 的相关知识点. 堆支持在 \(O(\log n)\) 的时间内进行插入元素.查询最值和删除最值的操作.在这里,如果最值是最小 ...
- 洛谷 P3377 【模板】左偏树(可并堆)
洛谷 P3377 [模板]左偏树(可并堆) 题目描述 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或 ...
- bzoj 2039 & 洛谷 P1791 人员雇佣 —— 二元关系最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2039 https://www.luogu.org/problemnew/show/P1791 ...
- 最小表示法模板(洛谷P1368 工艺)(最小表示法)
洛谷题目传送门 最小表示是指一个字符串通过循环位移变换(第一个移到最后一个)所能得到的字典序最小的字符串. 因为是环状的,所以肯定要先转化为序列,把原串倍长. 设决策点为一个表示法的开头.比较两个决策 ...
- 洛谷 P3187 BZOJ 1185 [HNOI2007]最小矩形覆盖 (旋转卡壳)
题目链接: 洛谷 P3187 [HNOI2007]最小矩形覆盖 BZOJ 1185: [HNOI2007]最小矩形覆盖 Description 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形, ...
- LOJ #2185 / 洛谷 P3329 - [SDOI2015]约数个数和(莫比乌斯函数)
LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \( ...
- 洛谷AT2046 Namori(思维,基环树,树形DP)
洛谷题目传送门 神仙思维题还是要写点东西才好. 树 每次操作把相邻且同色的点反色,直接这样思考会发现状态有很强的后效性,没办法考虑转移. 因为树是二分图,所以我们转化模型:在树的奇数层的所有点上都有一 ...
- ⌈洛谷1505⌋⌈BZOJ2157⌋⌈国家集训队⌋旅游【树链剖分】
题目链接 [洛谷] [BZOJ] 题目描述 Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接.为了方便游客到达每个景点但又为了节约成本,T ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
随机推荐
- 微信小程序的bindtap事件
在微信小程序中,要想获取元素的属性值,需要用到 bindtap事件,如果想要正确获取到属性值,对属性的命名还有一定要求 如下是正确的方式data-money-Num="9.93": ...
- Linux:DHCP服务器的搭建
了解DHCP协议工作原理 DHCP(Dynamic Host Configuration Protocol,动态主机配置协议)提供了动态配置IP地址的功能.在DHCP网络中,客户端不再需要自行输入网络 ...
- 201871010105-曹玉中《面向对象程序设计(Java)》第一周学习总结
201871010105-曹玉中<面向对象程序设计(Java)>第一周学习总结 项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这 ...
- java异常处理机制详解
java异常处理机制详解 程序很难做到完美,不免有各种各样的异常.比如程序本身有bug,比如程序打印时打印机没有纸了,比如内存不足.为了解决这些异常,我们需要知道异常发生的原因.对于一些常见的异常,我 ...
- 基于UDP协议的socket套接字编程
目录 一.UDP套接字简单示例 1.1 服务端 二.客户端 三.UPD套接字无粘包问题 3.1 服务端 3.2 客户端 四.qq聊天 4.1 服务端 4.2 客户端1 4.3 客户端2 4.4 运行结 ...
- .NET Core 序列化对象输出字节数大小比较
写代码验证了一下 .NET Core 中序列化对象输出字节数大小,.NET Core 版本是 3.0.100-preview8-013656 ,对象属性使用了 Guid 与 DateTime 类型,胜 ...
- angular ng-bind-html异常Attempting to use an unsafe value in a safe context处理
在angular中使用ng-data-html渲染dom时,遇到了一个Attempting to use an unsafe value in a safe context错误,官方给出的理由是‘试图 ...
- ModelAndView重定向带参数解决方法
业务场景:SpringMVC项目使用ModelAndView进行重定向跳转到另外一个action时,需要在url后面带上参数 如果是带参数带一个页面,直接用modelAndView.addObject ...
- linux的vi编辑器常用用法一览
vi 命令用于编辑文本文件,语法: vi 文件名 vi 是一个比较强大的编辑工具,类似于windows下的notepad,但是功能要强大的多.vi分为三种模式,分别是“一般模式”,“编辑模式”,“命令 ...
- Linux安装最新版Node.js
由于直接yum安装的nodejs版本太低,所以本篇文章向大家介绍在 Linux 上安装 Node.js 最新版的方法. 安装环境 本机系统:CentOS Linux release 7.5 Node. ...