洛谷

题意:

给出一个无向图,之后有\(q,q\leq 30\)组询问,每组询问有一个\(x\),回答有多少点对\((a,b)\)其\(a-b\)最小割不超过\(x\)。

思路:

这个题做法要最小割树...这个东西大概就是对于当前点集任意选择两个点\(s,t\)作为源点和汇点,然后求出当前最小割,之后两个集合连边为最小割权值;然后两个集合递归下去处理。

显然最后集合中只会存在一个元素,那么最后形成的就是一颗树。

最小割树有一个性质:对于树上\(u,v\)两点,其路径上的边权最小值即为两点的最小割。

这个感谢理解一下?

最后处理的时候每次将点按照集合重排序然后递归下去,另外注意一下更新\(ans\)时的枚举范围,这时两个集合中的任意一对点的最小割都不会超过\(d\)。

直观理解最小割树参见:传送门

代码如下:

/*
* Author: heyuhhh
* Created Time: 2019/10/31 21:20:48
*/
#include <bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 155, M = 10005;
#define _S heyuhhh
template <class T>
struct Dinic{
struct Edge{
int v, next;
T flow, w;
Edge(){}
Edge(int v, int next, T flow, T w) : v(v), next(next), flow(flow), w(w) {}
}e[M << 1];
int head[N], tot;
int dep[N];
bool vis[N];
void init() {
memset(head, -1, sizeof(head)); tot = 0;
}
void adde(int u, int v, T w, T rw = 0) {
e[tot] = Edge(v, head[u], w, w);
head[u] = tot++;
e[tot] = Edge(u, head[v], rw, rw);
head[v] = tot++;
}
bool BFS(int _S, int _T) {
memset(dep, 0, sizeof(dep));
queue <int> q; q.push(_S); dep[_S] = 1;
while(!q.empty()) {
int u = q.front(); q.pop();
for(int i = head[u]; ~i; i = e[i].next) {
int v = e[i].v;
if(!dep[v] && e[i].flow > 0) {
dep[v] = dep[u] + 1;
q.push(v);
}
}
}
return dep[_T] != 0;
}
T dfs(int _S, int _T, T a) {
T flow = 0, f;
if(_S == _T || a == 0) return a;
for(int i = head[_S]; ~i; i = e[i].next) {
int v = e[i].v;
if(dep[v] != dep[_S] + 1) continue;
f = dfs(v, _T, min(a, e[i].flow));
if(f) {
e[i].flow -= f;
e[i ^ 1].flow += f;
flow += f;
a -= f;
if(a == 0) break;
}
}
if(!flow) dep[_S] = -1;
return flow;
}
T dinic(int _S, int _T) {
T max_flow = 0;
while(BFS(_S, _T)) max_flow += dfs(_S, _T, INF);
return max_flow;
}
void color(int u) {
vis[u] = true;
for(int i = head[u]; i != -1; i = e[i].next) {
int v = e[i].v;
if(vis[v] == false && e[i].flow) color(v);
}
}
void pre() {
memset(vis, 0, sizeof(vis));
for(int i = 0; i < tot; i++) e[i].flow = e[i].w;
}
};
Dinic <int> solver;
int n, m;
int c[N][N];
int a[N], ans[N][N];
int tmp1[N], tmp2[N];
void solve(int l, int r) {
if(l >= r) return;
solver.pre();
int S = a[l], T = a[r];
int d = solver.dinic(S, T);
solver.color(S);
for(int i = 1; i <= n; i++) if(solver.vis[i]) {
for(int j = 1; j <= n; j++) if(!solver.vis[j]) {
ans[i][j] = ans[j][i] = min(ans[i][j], d);
}
}
int t1 = 0, t2 = 0;
for(int i = l; i <= r; i++) {
if(solver.vis[a[i]]) tmp1[++t1] = a[i];
else tmp2[++t2] = a[i];
}
for(int i = l; i <= l + t1 - 1; i++) a[i] = tmp1[i - l + 1];
for(int i = l + t1; i <= r; i++) a[i] = tmp2[i - t1 - l + 1];
solve(l, l + t1 - 1); solve(l + t1, r);
}
void run(){
cin >> n >> m;
solver.init();
memset(c, 0, sizeof(c));
memset(ans, INF, sizeof(ans));
for(int i = 1; i <= m; i++) {
int u, v, w; cin >> u >> v >> w;
c[u][v] += w;
c[v][u] = c[u][v];
}
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
if(c[i][j]) solver.adde(i, j, c[i][j]);
}
}
for(int i = 1; i <= n; i++) a[i] = i;
solve(1, n);
int q; cin >> q;
for(int k = 1; k <= q; k++) {
int x; cin >> x;
int res = 0;
for(int i = 1; i <= n; i++)
for(int j = i + 1; j <= n; j++)
if(ans[i][j] <= x) ++res;
cout << res << '\n';
}
cout << '\n';
} int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
int T; cin >> T;
while(T--) run();
return 0;
}

【洛谷P3329】 [ZJOI2011]最小割(最小割树)的更多相关文章

  1. 洛谷P3377 【模板】左偏树(可并堆) 题解

    作者:zifeiy 标签:左偏树 这篇随笔需要你在之前掌握 堆 和 二叉树 的相关知识点. 堆支持在 \(O(\log n)\) 的时间内进行插入元素.查询最值和删除最值的操作.在这里,如果最值是最小 ...

  2. 洛谷 P3377 【模板】左偏树(可并堆)

    洛谷 P3377 [模板]左偏树(可并堆) 题目描述 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或 ...

  3. bzoj 2039 & 洛谷 P1791 人员雇佣 —— 二元关系最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2039 https://www.luogu.org/problemnew/show/P1791 ...

  4. 最小表示法模板(洛谷P1368 工艺)(最小表示法)

    洛谷题目传送门 最小表示是指一个字符串通过循环位移变换(第一个移到最后一个)所能得到的字典序最小的字符串. 因为是环状的,所以肯定要先转化为序列,把原串倍长. 设决策点为一个表示法的开头.比较两个决策 ...

  5. 洛谷 P3187 BZOJ 1185 [HNOI2007]最小矩形覆盖 (旋转卡壳)

    题目链接: 洛谷 P3187 [HNOI2007]最小矩形覆盖 BZOJ 1185: [HNOI2007]最小矩形覆盖 Description 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形, ...

  6. LOJ #2185 / 洛谷 P3329 - [SDOI2015]约数个数和(莫比乌斯函数)

    LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \( ...

  7. 洛谷AT2046 Namori(思维,基环树,树形DP)

    洛谷题目传送门 神仙思维题还是要写点东西才好. 树 每次操作把相邻且同色的点反色,直接这样思考会发现状态有很强的后效性,没办法考虑转移. 因为树是二分图,所以我们转化模型:在树的奇数层的所有点上都有一 ...

  8. ⌈洛谷1505⌋⌈BZOJ2157⌋⌈国家集训队⌋旅游【树链剖分】

    题目链接 [洛谷] [BZOJ] 题目描述 Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接.为了方便游客到达每个景点但又为了节约成本,T ...

  9. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

随机推荐

  1. 微信小程序的bindtap事件

    在微信小程序中,要想获取元素的属性值,需要用到 bindtap事件,如果想要正确获取到属性值,对属性的命名还有一定要求 如下是正确的方式data-money-Num="9.93": ...

  2. Linux:DHCP服务器的搭建

    了解DHCP协议工作原理 DHCP(Dynamic Host Configuration Protocol,动态主机配置协议)提供了动态配置IP地址的功能.在DHCP网络中,客户端不再需要自行输入网络 ...

  3. 201871010105-曹玉中《面向对象程序设计(Java)》第一周学习总结

    201871010105-曹玉中<面向对象程序设计(Java)>第一周学习总结 项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这 ...

  4. java异常处理机制详解

    java异常处理机制详解 程序很难做到完美,不免有各种各样的异常.比如程序本身有bug,比如程序打印时打印机没有纸了,比如内存不足.为了解决这些异常,我们需要知道异常发生的原因.对于一些常见的异常,我 ...

  5. 基于UDP协议的socket套接字编程

    目录 一.UDP套接字简单示例 1.1 服务端 二.客户端 三.UPD套接字无粘包问题 3.1 服务端 3.2 客户端 四.qq聊天 4.1 服务端 4.2 客户端1 4.3 客户端2 4.4 运行结 ...

  6. .NET Core 序列化对象输出字节数大小比较

    写代码验证了一下 .NET Core 中序列化对象输出字节数大小,.NET Core 版本是 3.0.100-preview8-013656 ,对象属性使用了 Guid 与 DateTime 类型,胜 ...

  7. angular ng-bind-html异常Attempting to use an unsafe value in a safe context处理

    在angular中使用ng-data-html渲染dom时,遇到了一个Attempting to use an unsafe value in a safe context错误,官方给出的理由是‘试图 ...

  8. ModelAndView重定向带参数解决方法

    业务场景:SpringMVC项目使用ModelAndView进行重定向跳转到另外一个action时,需要在url后面带上参数 如果是带参数带一个页面,直接用modelAndView.addObject ...

  9. linux的vi编辑器常用用法一览

    vi 命令用于编辑文本文件,语法: vi 文件名 vi 是一个比较强大的编辑工具,类似于windows下的notepad,但是功能要强大的多.vi分为三种模式,分别是“一般模式”,“编辑模式”,“命令 ...

  10. Linux安装最新版Node.js

    由于直接yum安装的nodejs版本太低,所以本篇文章向大家介绍在 Linux 上安装 Node.js 最新版的方法. 安装环境 本机系统:CentOS Linux release 7.5 Node. ...