Semantic 3D

这个数据级别的训练集有一个小BUG,是这个neugasse_station1_xyz_intensity_rgb.7z, 解压之后的名字是station1_xyz_intensity_rgb.txt,自己最好手动去修改成neugasse_station1_xyz_intensity_rgb.txt,不然跑一写程序会存在一些问题

简介

因为我们使用‘户外场景’的数据做实验,这种论文能投的期刊范围会更广一些。比如遥感类的期刊,就很喜欢这种场景,它不喜欢ModelNet40这种只有模型的数据库。

We provide both training and test data as zipped ascii text files with format {x, y, z, intensity, r, g, b}. The ground truth is provided as single column ascii file, where the row ids of the class labeles and the points correspond
如何理解instensity这个通道,可以点击这里或者这里

    • 是大范围点云分割的benchmark

    • 自然场景超过40亿,有ground truth 和hand-labelled,加压后总大小大概150G

    • 提供了两种数据:

      1. semantic-8,包含8类东西(1:
        man-made terrain, 2: natural terrain, 3: high vegetation, 4: low
        vegetation, 5: buildings, 6: hard scape, 7: scanning artefacts, 8: cars,
        0: unlabeled points)。0lable 没有ground truth也不应该没用于训练。训练集和测试集各15个,点云总数超过10亿, 所以作者怕你的算法受不了,所以提供了一个压缩版本的
      2. reduce-8训练集和semantic-8一样,测试集只是semantic-8的一部分。测试集是0.01m的均匀下采样.

我们的semantic3D.net数据集由使用静态地面激光扫描仪获取的密集点云组成。

它包含8个语义类,涵盖了广泛的城市户外场景:教堂、街道、铁轨、广场、村庄、足球场和城堡。

大约有40亿个手工标记的点,具有良好的评估,并不断更新子版本。这是第一个数据集,允许在真正的三维激光扫描上进行全面的深度学习,每个点都有高质量的手动标签。训练集和测试集各15个

我们发布的30个地面激光扫描由总计≈4 bil- lion 3D点组成,包含城市和农村场景,如农场、市政厅、运动场、城堡和市场广场。我们精心选择了各种不同的自然和人工场景,以防止分类器的过度拟合。所有发布的场景都是在中欧捕获的,并描述了典型的Eu- ropean体系结构,如图4所示。测量级激光扫描仪被用来记录这些场景。在后处理步骤中,通过部署由摄像机图像生成的高分辨率cubemap对图像进行着色。一般来说,静态激光扫描具有很高的分辨率,能够在很小的噪声下测量长距离。特别是与通过运动管道或类kinect结构光传感器导出的点云相比,激光扫描仪提供了表面数据质量。

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
image-20190328095619959.png

强度值(左)、rgb颜色(中)和类标签(右)。

在这个基准测试挑战中,我们使用了以下8个类,包括:

1)人造地形:主要是路面;

2)自然地形:以草地为主;

3)高植被:树木和大灌木丛;

4)低植被:小于2米的花或小灌木;

5)建筑物:教堂、市政厅、车站、公寓等;

6)剩余硬景观:一个杂乱的类,例如加登墙,喷泉,银行等;

7)扫描伪影:静态扫描记录过程中,动态移动的物体引起的伪影;

小汽车和卡车。

其中一些类定义不明确,例如,一些扫描工件也可以用于汽车或卡车,很难区分大灌木丛和小灌木丛。然而,这些类在许多应用程序中是有用的。请注意,在大多数应用程序中,第7类扫描工件都是用启发式规则集过滤的。在这个基准测试中,我们希望部署机器学习技术,因此不执行任何启发式预处理。

 
 
 
 
 
 
 
 
 
 
 
image-20190328103110673.png

format {x, y, z, intensity, r, g, b}

作者:jill809
链接:https://www.jianshu.com/p/3147f5bc81f0
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

 

Semantic 3D的更多相关文章

  1. segMatch:基于3D点云分割的回环检测

    该论文的地址是:https://arxiv.org/pdf/1609.07720.pdf segmatch是一个提供车辆的回环检测的技术,使用提取和匹配分割的三维激光点云技术.分割的例子可以在下面的图 ...

  2. [PCL]2 点云法向量计算NormalEstimation

    从GitHub的代码版本库下载源代码https://github.com/PointCloudLibrary/pcl,用CMake生成VS项目,查看PCL的源码位于pcl_features项目下 1. ...

  3. 最近一年语义SLAM有哪些代表性工作?

    点击"计算机视觉life"关注,置顶更快接收消息! 本文由作者刘骁授权发布,转载请联系原作者,个人主页http://www.liuxiao.org 目前 Semantic SLAM ...

  4. 2016CVPR论文集

    http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answe ...

  5. CVPR 2015 papers

    CVPR2015 Papers震撼来袭! CVPR 2015的文章可以下载了,如果链接无法下载,可以在Google上通过搜索paper名字下载(友情提示:可以使用filetype:pdf命令). Go ...

  6. CVPR2016 Paper list

    CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - ...

  7. Official Program for CVPR 2015

    From:  http://www.pamitc.org/cvpr15/program.php Official Program for CVPR 2015 Monday, June 8 8:30am ...

  8. 3D Graph Neural Networks for RGBD Semantic Segmentation

    3D Graph Neural Networks for RGBD Semantic Segmentation 原文章:https://www.yuque.com/lart/papers/wmu47a ...

  9. 泡泡一分钟:Semantic Labeling of Indoor Environments from 3D RGB Maps

    张宁 Semantic Labeling of Indoor Environments from 3D RGB Maps Manuel Brucker,  Maximilian Durner,  Ra ...

随机推荐

  1. 浅谈JS重绘与回流

    在说浏览器渲染页面之前,我们需要先了解两个点,一个叫 浏览器解析 URL,另一个就是本章节将涉及的 重绘与回流: 重绘(repaint):当元素样式的改变不影响布局时,浏览器将使用重绘对元素进行更新, ...

  2. 201871010126 王亚涛 《面向对象程序设计 (Java)》第十六周学习总结

    内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 https://www.cnblogs.com/nwnu-daizh/p/12 ...

  3. CF620C Pearls in a Row

    CF620C Pearls in a Row 洛谷评测传送门 题目描述 There are nn pearls in a row. Let's enumerate them with integers ...

  4. UnitTest和Developer

    UnitTest对项目很重要,这是很多developer都明白的道理,可是真的让所有的developer对自己的代码写UnitTest,似乎是不可能的. developer完全可以以已经有很多task ...

  5. npm 命令 --save 和 --save-dev 的区别

    回顾 npm install 命令 我们在使用 npm install 安装模块的模块的时候 ,一般会使用下面这几种命令形式: 1 2 3 4 5 6 7 npm install moduleName ...

  6. wepy安装后提示Cannot read property 'addDeps'

    最近准备做一个微信小程序,以前一直用的小程序原始api做,但是这次准备用一个框架来做练习,当然在做之前需要比较一下现在小程序框架的优缺点. 经过认真挑选,选定wepy,Taro,uni-app,mpv ...

  7. es6一句话拾遗

    Symbol最大的作用就是用于消除魔术字符串: Set跟数组的最大区别,就是Set的成员都是唯一的,没有重复:(方法:add(value),has,delete,clear) Map跟对象的最大区别, ...

  8. 【STM32H7教程】第25章 STM32H7的TCM,SRAM等五块内存基础知识

    完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第25章       STM32H7的TCM,SRAM等五块内 ...

  9. vue中template的作用及使用

     先来看一个需求:下图div用v-for做了列表循环,现在想要span也一起循环,应该怎么做? 有3种方法可以实现 ①:直接用v-for对span也循环一次(该方法虽然可以使用,但不要用这种方式,因为 ...

  10. 【编译系统01】编译器 - 词法分析器(lexial)的设计思路

    时间:2019/11/29 首先,词法分析器由一个扫描器与状态机组成. 一. 词法分析器整体设计流程 二.设计细节 1. code.txt: 我们假设读取下面文本 2.符号类型的设计 我们使用 enu ...