Semantic 3D

这个数据级别的训练集有一个小BUG,是这个neugasse_station1_xyz_intensity_rgb.7z, 解压之后的名字是station1_xyz_intensity_rgb.txt,自己最好手动去修改成neugasse_station1_xyz_intensity_rgb.txt,不然跑一写程序会存在一些问题

简介

因为我们使用‘户外场景’的数据做实验,这种论文能投的期刊范围会更广一些。比如遥感类的期刊,就很喜欢这种场景,它不喜欢ModelNet40这种只有模型的数据库。

We provide both training and test data as zipped ascii text files with format {x, y, z, intensity, r, g, b}. The ground truth is provided as single column ascii file, where the row ids of the class labeles and the points correspond
如何理解instensity这个通道,可以点击这里或者这里

    • 是大范围点云分割的benchmark

    • 自然场景超过40亿,有ground truth 和hand-labelled,加压后总大小大概150G

    • 提供了两种数据:

      1. semantic-8,包含8类东西(1:
        man-made terrain, 2: natural terrain, 3: high vegetation, 4: low
        vegetation, 5: buildings, 6: hard scape, 7: scanning artefacts, 8: cars,
        0: unlabeled points)。0lable 没有ground truth也不应该没用于训练。训练集和测试集各15个,点云总数超过10亿, 所以作者怕你的算法受不了,所以提供了一个压缩版本的
      2. reduce-8训练集和semantic-8一样,测试集只是semantic-8的一部分。测试集是0.01m的均匀下采样.

我们的semantic3D.net数据集由使用静态地面激光扫描仪获取的密集点云组成。

它包含8个语义类,涵盖了广泛的城市户外场景:教堂、街道、铁轨、广场、村庄、足球场和城堡。

大约有40亿个手工标记的点,具有良好的评估,并不断更新子版本。这是第一个数据集,允许在真正的三维激光扫描上进行全面的深度学习,每个点都有高质量的手动标签。训练集和测试集各15个

我们发布的30个地面激光扫描由总计≈4 bil- lion 3D点组成,包含城市和农村场景,如农场、市政厅、运动场、城堡和市场广场。我们精心选择了各种不同的自然和人工场景,以防止分类器的过度拟合。所有发布的场景都是在中欧捕获的,并描述了典型的Eu- ropean体系结构,如图4所示。测量级激光扫描仪被用来记录这些场景。在后处理步骤中,通过部署由摄像机图像生成的高分辨率cubemap对图像进行着色。一般来说,静态激光扫描具有很高的分辨率,能够在很小的噪声下测量长距离。特别是与通过运动管道或类kinect结构光传感器导出的点云相比,激光扫描仪提供了表面数据质量。

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
image-20190328095619959.png

强度值(左)、rgb颜色(中)和类标签(右)。

在这个基准测试挑战中,我们使用了以下8个类,包括:

1)人造地形:主要是路面;

2)自然地形:以草地为主;

3)高植被:树木和大灌木丛;

4)低植被:小于2米的花或小灌木;

5)建筑物:教堂、市政厅、车站、公寓等;

6)剩余硬景观:一个杂乱的类,例如加登墙,喷泉,银行等;

7)扫描伪影:静态扫描记录过程中,动态移动的物体引起的伪影;

小汽车和卡车。

其中一些类定义不明确,例如,一些扫描工件也可以用于汽车或卡车,很难区分大灌木丛和小灌木丛。然而,这些类在许多应用程序中是有用的。请注意,在大多数应用程序中,第7类扫描工件都是用启发式规则集过滤的。在这个基准测试中,我们希望部署机器学习技术,因此不执行任何启发式预处理。

 
 
 
 
 
 
 
 
 
 
 
image-20190328103110673.png

format {x, y, z, intensity, r, g, b}

作者:jill809
链接:https://www.jianshu.com/p/3147f5bc81f0
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

 

Semantic 3D的更多相关文章

  1. segMatch:基于3D点云分割的回环检测

    该论文的地址是:https://arxiv.org/pdf/1609.07720.pdf segmatch是一个提供车辆的回环检测的技术,使用提取和匹配分割的三维激光点云技术.分割的例子可以在下面的图 ...

  2. [PCL]2 点云法向量计算NormalEstimation

    从GitHub的代码版本库下载源代码https://github.com/PointCloudLibrary/pcl,用CMake生成VS项目,查看PCL的源码位于pcl_features项目下 1. ...

  3. 最近一年语义SLAM有哪些代表性工作?

    点击"计算机视觉life"关注,置顶更快接收消息! 本文由作者刘骁授权发布,转载请联系原作者,个人主页http://www.liuxiao.org 目前 Semantic SLAM ...

  4. 2016CVPR论文集

    http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answe ...

  5. CVPR 2015 papers

    CVPR2015 Papers震撼来袭! CVPR 2015的文章可以下载了,如果链接无法下载,可以在Google上通过搜索paper名字下载(友情提示:可以使用filetype:pdf命令). Go ...

  6. CVPR2016 Paper list

    CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - ...

  7. Official Program for CVPR 2015

    From:  http://www.pamitc.org/cvpr15/program.php Official Program for CVPR 2015 Monday, June 8 8:30am ...

  8. 3D Graph Neural Networks for RGBD Semantic Segmentation

    3D Graph Neural Networks for RGBD Semantic Segmentation 原文章:https://www.yuque.com/lart/papers/wmu47a ...

  9. 泡泡一分钟:Semantic Labeling of Indoor Environments from 3D RGB Maps

    张宁 Semantic Labeling of Indoor Environments from 3D RGB Maps Manuel Brucker,  Maximilian Durner,  Ra ...

随机推荐

  1. C++ int型负数除法取余问题

    1:关于除法,不管是正数还是负数都是向0取整的:10/4 = 2,10/(-4) = -2 2:负数取余,通过取模来判定 |小| % |大| = |小| 符号同前    |大| % |小| = |余| ...

  2. oracle中utl_raw

    RAW,类似于CHAR,声明方式RAW(L),L为长度,以字节为单位,作为数据库列最大2000,作为变量最大32767字节.LONG RAW,类似于LONG,作为数据库列最大存储2G字节的数据,作为变 ...

  3. DRF--路由组件和版本控制

    路由组件 先来看下我们前面写的路由 from django.conf.urls import url, include from .views import BookModelView urlpatt ...

  4. linux 判断文件夹或文件是否存在

    文件夹不存在则创建 if [ ! -d "/data/" ];then mkdir /data else echo "文件夹已经存在" fi 文件存在则删除 i ...

  5. 函数高级实战之ATM和购物车系统升级

    一.项目 二.项目地址 https://github.com/nickchen121/atm 三.功能需求 FUNC_MSG = { '0': '注销', '1': '登录', '2': '注册', ...

  6. 大话设计模式Python实现-单例模式

    单例模式(Singleton Pattern):保证类仅有一个实例,并提供一个访问它的全局访问点. 下面是单例模式的demo: #!/usr/bin/env python # -*- coding:u ...

  7. 21个Java Collections面试问答

    Java Collections框架是Java编程语言的核心API之一. 这是Java面试问题的重要主题之一.在这里,我列出了一些重要的Java集合面试问题和解答,以帮助您进行面试.这直接来自我14年 ...

  8. SpringBoot开发案例之mail中文附件名字乱码

    最近在开发一个邮件发送多附件的微服务,使用的是org.springframework.mail.javamail.JavaMailSender;包下面的JavaMailSender 但是发送出来的附件 ...

  9. Serlvet、JSP和JSTL的联系

    没有无缘无故的爱和恨,没有无缘无故的编程 前言: 想这世间,没有无缘无故的爱,也没有无缘无故的恨,一切都有有原因的,我想编程亦是如此,技术时常更新,程序员时常学习,随着时间的推移,程序员发际线的增高, ...

  10. ABP开发框架前后端开发系列---(6)ABP基础接口处理和省份城市行政区管理模块的开发

    最近没有更新ABP框架的相关文章,一直在研究和封装相关的接口,总算告一段落,开始继续整理下开发心得.上次我在随笔<ABP开发框架前后端开发系列---(5)Web API调用类在Winform项目 ...