Semantic 3D

这个数据级别的训练集有一个小BUG,是这个neugasse_station1_xyz_intensity_rgb.7z, 解压之后的名字是station1_xyz_intensity_rgb.txt,自己最好手动去修改成neugasse_station1_xyz_intensity_rgb.txt,不然跑一写程序会存在一些问题

简介

因为我们使用‘户外场景’的数据做实验,这种论文能投的期刊范围会更广一些。比如遥感类的期刊,就很喜欢这种场景,它不喜欢ModelNet40这种只有模型的数据库。

We provide both training and test data as zipped ascii text files with format {x, y, z, intensity, r, g, b}. The ground truth is provided as single column ascii file, where the row ids of the class labeles and the points correspond
如何理解instensity这个通道,可以点击这里或者这里

    • 是大范围点云分割的benchmark

    • 自然场景超过40亿,有ground truth 和hand-labelled,加压后总大小大概150G

    • 提供了两种数据:

      1. semantic-8,包含8类东西(1:
        man-made terrain, 2: natural terrain, 3: high vegetation, 4: low
        vegetation, 5: buildings, 6: hard scape, 7: scanning artefacts, 8: cars,
        0: unlabeled points)。0lable 没有ground truth也不应该没用于训练。训练集和测试集各15个,点云总数超过10亿, 所以作者怕你的算法受不了,所以提供了一个压缩版本的
      2. reduce-8训练集和semantic-8一样,测试集只是semantic-8的一部分。测试集是0.01m的均匀下采样.

我们的semantic3D.net数据集由使用静态地面激光扫描仪获取的密集点云组成。

它包含8个语义类,涵盖了广泛的城市户外场景:教堂、街道、铁轨、广场、村庄、足球场和城堡。

大约有40亿个手工标记的点,具有良好的评估,并不断更新子版本。这是第一个数据集,允许在真正的三维激光扫描上进行全面的深度学习,每个点都有高质量的手动标签。训练集和测试集各15个

我们发布的30个地面激光扫描由总计≈4 bil- lion 3D点组成,包含城市和农村场景,如农场、市政厅、运动场、城堡和市场广场。我们精心选择了各种不同的自然和人工场景,以防止分类器的过度拟合。所有发布的场景都是在中欧捕获的,并描述了典型的Eu- ropean体系结构,如图4所示。测量级激光扫描仪被用来记录这些场景。在后处理步骤中,通过部署由摄像机图像生成的高分辨率cubemap对图像进行着色。一般来说,静态激光扫描具有很高的分辨率,能够在很小的噪声下测量长距离。特别是与通过运动管道或类kinect结构光传感器导出的点云相比,激光扫描仪提供了表面数据质量。

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
image-20190328095619959.png

强度值(左)、rgb颜色(中)和类标签(右)。

在这个基准测试挑战中,我们使用了以下8个类,包括:

1)人造地形:主要是路面;

2)自然地形:以草地为主;

3)高植被:树木和大灌木丛;

4)低植被:小于2米的花或小灌木;

5)建筑物:教堂、市政厅、车站、公寓等;

6)剩余硬景观:一个杂乱的类,例如加登墙,喷泉,银行等;

7)扫描伪影:静态扫描记录过程中,动态移动的物体引起的伪影;

小汽车和卡车。

其中一些类定义不明确,例如,一些扫描工件也可以用于汽车或卡车,很难区分大灌木丛和小灌木丛。然而,这些类在许多应用程序中是有用的。请注意,在大多数应用程序中,第7类扫描工件都是用启发式规则集过滤的。在这个基准测试中,我们希望部署机器学习技术,因此不执行任何启发式预处理。

 
 
 
 
 
 
 
 
 
 
 
image-20190328103110673.png

format {x, y, z, intensity, r, g, b}

作者:jill809
链接:https://www.jianshu.com/p/3147f5bc81f0
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

 

Semantic 3D的更多相关文章

  1. segMatch:基于3D点云分割的回环检测

    该论文的地址是:https://arxiv.org/pdf/1609.07720.pdf segmatch是一个提供车辆的回环检测的技术,使用提取和匹配分割的三维激光点云技术.分割的例子可以在下面的图 ...

  2. [PCL]2 点云法向量计算NormalEstimation

    从GitHub的代码版本库下载源代码https://github.com/PointCloudLibrary/pcl,用CMake生成VS项目,查看PCL的源码位于pcl_features项目下 1. ...

  3. 最近一年语义SLAM有哪些代表性工作?

    点击"计算机视觉life"关注,置顶更快接收消息! 本文由作者刘骁授权发布,转载请联系原作者,个人主页http://www.liuxiao.org 目前 Semantic SLAM ...

  4. 2016CVPR论文集

    http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answe ...

  5. CVPR 2015 papers

    CVPR2015 Papers震撼来袭! CVPR 2015的文章可以下载了,如果链接无法下载,可以在Google上通过搜索paper名字下载(友情提示:可以使用filetype:pdf命令). Go ...

  6. CVPR2016 Paper list

    CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - ...

  7. Official Program for CVPR 2015

    From:  http://www.pamitc.org/cvpr15/program.php Official Program for CVPR 2015 Monday, June 8 8:30am ...

  8. 3D Graph Neural Networks for RGBD Semantic Segmentation

    3D Graph Neural Networks for RGBD Semantic Segmentation 原文章:https://www.yuque.com/lart/papers/wmu47a ...

  9. 泡泡一分钟:Semantic Labeling of Indoor Environments from 3D RGB Maps

    张宁 Semantic Labeling of Indoor Environments from 3D RGB Maps Manuel Brucker,  Maximilian Durner,  Ra ...

随机推荐

  1. Python:程序练习题(二)

    Python:程序练习题(二) 2.1温度转换程序. 代码如下: t=input("请输入带符号的温度值(如:32C):") if t[-1] in ["C", ...

  2. 用vbs和ADSI管理Windows账户

    ADSI (Active Directory Services Interface)是Microsoft新推出的一项技术,它统一了许多底层服务的编程接口,程序员可以使用一致的对象技术来访问这些底层服务 ...

  3. CF1253E Antenna Coverage(DP)

    本题难点在正确性证明. 令 \(f_i\) 表示 \([1,i]\) 被全部覆盖的最小花费.答案为 \(f_m\). 首先发现,添加一个区间 \([0,0]\) 不会影响答案.所以 \(f_i\) 的 ...

  4. 立足于运维与监控的前端框架 NoahV

    NoahV是一个致力于解决中后台前端效率问题的前端框架,立足于运维和监控的应用场景,使用当前前端最新的技术栈并结合团队在项目开发中的最佳实践从而推出的前端开发框架. NoahV提供的功能覆盖了从开发到 ...

  5. 如何用 Python 给照片换色

    最近遇到了一个需求,就是对图片进行色彩风格转换,让一个物体可以以各种不同的色彩来呈现. 比如一个红色的苹果,我想把它转化成绿色,这可怎么办呢?本来想的解决方案是先识别边界,然后对边界内区域进行色彩替换 ...

  6. SQLServer某个库log日志过大,无法收缩日志文件 ,因为该文件结尾的逻辑日志文件正在使用

    问题描述: 今天看到user库日志备份方面很久,然后查看到user库这个log日志很大 图片是我已经解决了,然后现在可以收缩的大小 解决方法: 1.先备份user库日志,因为很大,所以要等很久,这个只 ...

  7. 图解Java常用数据结构

    最近在整理数据结构方面的知识, 系统化看了下 Java 中常用数据结构, 突发奇想用动画来绘制数据流转过程. 主要基于 jdk8, 可能会有些特性与 jdk7 之前不相同, 例如 LinkedList ...

  8. IT兄弟连 Java语法教程 流程控制语句 分支结构语句4

    4  嵌套if-else条件语句 嵌套if语句是作为另一个if或else语句的目标的if语句.嵌套if语句在程序设计中非常普遍.Java中,关于嵌套if语句需要记住的是,else语句总是和同一代码块中 ...

  9. 浏览器关闭后Session真的消失了吗?

    今天想和大家分享一个关于Session的话题: 当浏览器关闭时,Session就被销毁了?  我们知道Session是JSP的九大内置对象(也叫隐含对象)中的一个,它的作用是可以保 存当前用户的状态信 ...

  10. WPF中Button的背景图片,实现禁止IsMouseOver时显示默认

    <Button x:Name="btnPickUpNum" Click="PickUpNum_OnClick" Grid.Row="1" ...