(转载)CNN 模型所需的计算力(FLOPs)和参数(parameters)数量计算
FLOPS:注意全大写,是floating point operations per second的缩写,意指每秒浮点运算次数,理解为计算速度。是一个衡量硬件性能的指标。
FLOPs:注意s小写,是floating point operations的缩写(s表复数),意指浮点运算数,理解为计算量。可以用来衡量算法/模型的复杂度。
网上打字很容易全小写,造成混淆,本问题针对模型,应指的是FLOPs。
以下答案不考虑activation function的运算。
卷积层:
Ci=input channel, k=kernel size, HW=output feature map size, Co=output channel.
2是因为一个MAC算2个operations。
不考虑bias时有-1,有bias时没有-1。
上面针对一个input feature map,没考虑batch size。
理解上面这个公式分两步,括号内是第一步,计算出output feature map的一个pixel,然后再乘以HWCo拓展到整个output feature map。括号内的部分又可以分为两步, ,第一项是乘法运算数,第二项是加法运算数,因为n个数相加,要加n-1次,所以不考虑bias,会有一个-1,如果考虑bias,刚好中和掉,括号内变为
全联接层:
I=input neuron numbers, O=output neuron numbers.
2是因为一个MAC算2个operations。
不考虑bias时有-1,有bias时没有-1。
分析同理,括号内是一个输出神经元的计算量,拓展到O了输出神经元。
参考:chen liu
对于一个卷积层,假设其大小为 (其中c为#input channel, n为#output channel),输出的feature map尺寸为
,则该卷积层的
- #paras =
- #FLOPS=
即#FLOPS= #paras
参考:李珂
Model_size = 4*params 模型大小为参数量的4倍
附:Pytorch计算FLOPs的代码:
http://link.zhihu.com/?target=https%3A//github.com/Lyken17/pytorch-OpCounter
https://github.com/sovrasov/flops-counter.pytorch
神器(pytorch):
pytorch-OpCounter 用法:(pytorch版本>=1.0)
from torchvision.models import resnet50
from thop import profile
model = resnet50()
flops, params = profile(model, input_size=(1, 3, 224,224))
torchstat 用法:
from torchstat import stat
import torchvision.models as models model = model.alexnet()
stat(model, (3, 224, 224))
flopth 用法:
from flopth import flopth
print(flopth(net, in_size=[3,112,112]))
ptflops用法:
from ptflops import get_model_complexity_info
flops, params = get_model_complexity_info(net, (3, 224, 224), as_strings=True, print_per_layer_stat=True)
print('Flops: ' + flops)
print('Params: ' + params)
自己计算参数量:
print('Total params: %.2fM' % (sum(p.numel() for p in net.parameters())/1000000.0))
需要注意的是:params只与你定义的网络结构有关,和forward的任何操作无关。即定义好了网络结构,参数就已经决定了。FLOPs和不同的层运算结构有关。如果forward时在同一层(同一名字命名的层)多次运算,FLOPs不会增加。
参考:
(转载)CNN 模型所需的计算力(FLOPs)和参数(parameters)数量计算的更多相关文章
- 卷积神经网络(CNN)模型结构
在前面我们讲述了DNN的模型与前向反向传播算法.而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一.CNN广泛的应用 ...
- CNN 模型压缩与加速算法综述
本文由云+社区发表 导语:卷积神经网络日益增长的深度和尺寸为深度学习在移动端的部署带来了巨大的挑战,CNN模型压缩与加速成为了学术界和工业界都重点关注的研究领域之一. 前言 自从AlexNet一举夺得 ...
- 深度学习方法(七):最新SqueezeNet 模型详解,CNN模型参数降低50倍,压缩461倍!
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 继续前面关于深度学习CNN经典模型的 ...
- 经典CNN模型计算量与内存需求分析
表1 CNN经典模型的内存,计算量和参数数量对比 AlexNet VGG16 Inception-v3 模型内存(MB) >200 >500 90-100 参数(百万) 60 138 23 ...
- 经典分类CNN模型系列其五:Inception v2与Inception v3
经典分类CNN模型系列其五:Inception v2与Inception v3 介绍 Inception v2与Inception v3被作者放在了一篇paper里面,因此我们也作为一篇blog来对其 ...
- 基于Pre-Train的CNN模型的图像分类实验
基于Pre-Train的CNN模型的图像分类实验 MatConvNet工具包提供了好几个在imageNet数据库上训练好的CNN模型,可以利用这个训练好的模型提取图像的特征.本文就利用其中的 “im ...
- FaceRank-人脸打分基于 TensorFlow 的 CNN 模型
FaceRank-人脸打分基于 TensorFlow 的 CNN 模型 隐私 因为隐私问题,训练图片集并不提供,稍微可能会放一些卡通图片. 数据集 130张 128*128 张网络图片,图片名: 1- ...
- Keras入门(四)之利用CNN模型轻松破解网站验证码
项目简介 在之前的文章keras入门(三)搭建CNN模型破解网站验证码中,笔者介绍介绍了如何用Keras来搭建CNN模型来破解网站的验证码,其中验证码含有字母和数字. 让我们一起回顾一下那篇文 ...
- keras训练cnn模型时loss为nan
keras训练cnn模型时loss为nan 1.首先记下来如何解决这个问题的:由于我代码中 model.compile(loss='categorical_crossentropy', optimiz ...
随机推荐
- python read PDF for chinese
import sys import importlib importlib.reload(sys) from pdfminer.pdfparser import PDFParser,PDFDocume ...
- 2013.6.29 - OpenNER第九天
上午看计算机网络,下午做计算机实验.晚上写计算机实验报告,还有OpenStack的实验报告. 写完之后跟师兄讨论了一下OpenNER的事情,觉得OpenNE很像是化学物质,里面很多都可以构成原子团,原 ...
- clipse调试web项目配置调试配置——没有Server
文章:eclipse环境下如何配置tomcat(包含没有Server解决办法) 地址:https://blog.csdn.net/TimliangL/article/details/78882566
- 从客户端(content="xxxxx")中检测到有潜在危险的 Request.Form 值——较合理解决方案
1,修改配置文件: <httpRuntime requestValidationMode = "2.0" /> 以上修改是必须的,因为高版本的.netframework ...
- ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2017)- K. Poor Ramzi -dp+记忆化搜索
ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2017)- K. ...
- 从输入 URL 到页面展示到底发生了什么?
1.输入地址 当我们开始在浏览器中输入网址的时候,浏览器其实就已经在智能的匹配可能得 url 了,他会从历史记录,书签等地方,找到已经输入的字符串可能对应的 url,然后给出智能提示,让你可以补全ur ...
- 项目(一)--python3--爬虫实战
最近看了python3网络爬虫开发实战一书,内容全面,但不够深入:是入门的好书. 作者的gitbook电子版(缺少最后几章) python3网络爬虫实战完整版PDF(如百度网盘链接被屏蔽请联系我更新) ...
- Java动态代理演变之路
1.什么是代理? 代理,英文成文Proxy.意思是你不用去做,别人代替你去处理.比如有人想找明星周董去唱歌,他需要做签约.讨论.唱歌和付款等等过程,但真正周董擅长的事情是唱歌,其他的事情可以交代给他的 ...
- SQL操作Spark SQL--BasicSQLTestt
object BasicSQLTest { def main(args: Array[String]): Unit = { val spark = SparkSession .builder() .a ...
- 检查cgroup v2 是否安装
cgroup 当前包含了v1, 以及v2 版本,v2 版本相比v1 在目录组织上更加清晰,管理更加方便,很多 时候我们可能需要检查我们安装的内核当前内核版本是否支持cgroup v2 文章内容来自 h ...