【LeetCode】最长回文子串【动态规划或中心扩展】
给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。
示例 1:
输入: "babad"
输出: "bab"
注意: "aba" 也是一个有效答案。示例 2:
输入: "cbbd"
输出: "bb"来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-palindromic-substring
方法1:动态规划
最优子结构:当一个串是一个回文串的时候,在其头尾各加一个相同的字符组成的新字符串依旧是一个回文串
dp[i][j]=1,代表从下标i到下标j组成的字符串是一个回文串
如果s[i]==s[j]&&dp[i+1][j-1]==1,那么dp[i][j]=1
初始化:
1.对于一个字符的回文串:dp[i][i]=1
2.对于两个字符的回文串:如果s[i]==s[i+1],那么dp[i][i+1]=1
对于三个字符的回文串:如果s[i]==s[j]&&dp[i+1][j-1]==1,那么dp[i][j]=1
时间复杂度:O(N^2)
空间复杂度:O(N^2)
class Solution {
public:
string longestPalindrome(string s)
{
if(s.size()==)
return "";
if(s.size()==)
return s;
if(s.size()==&&s[]==s[])
return s;
int n=s.length();
int dp[n+][n+];
memset(dp,,sizeof(dp));
int ans=;
int start=;
for(int i=;i<n;i++)
{
dp[i][i]=;
}
for(int i=;i<n-;i++)
{
if(s[i]==s[i+])
{
dp[i][i+]=;
ans=;
start=i;
}
}
int l=;
while(l<=n)
{
for(int i=;i<n-l+;i++)
{
int j=i+l-;
if(dp[i+][j-]==&&s[i]==s[j])
{
dp[i][j]=;
start=i;
ans=l;
}
}
l++;
}
return s.substr(start,ans);
}
};
方法2:中心扩展法
将每个字符当作回文串的中心,然后往两边扩展,取扩展得到的回文串的最大值就是最长回文子串
考虑到回文串的奇偶情况,我们可以算两种情况:以一个字符为回文串的中心,以两个字符为回文串的中心,然后去二者最大值就可以
时间复杂度:O(N^2),以每个字符为中心需要遍历一次,然后每次都需要往两边扩展
空间复杂度:O(1),只需要用到一些常量
class Solution {
public:
int f1(string str,int left,int right,int n)
{
int c=;
//cout<<"left="<<left<<" right="<<right<<" n="<<n<<endl;
left--;
right++;
while(left>=&&right<n&&str[left]==str[right])
{
left--;
right++;
c+=;
}
return c;
}
int f2(string str,int left,int right,int n)
{
int c=;
if(str[left]==str[right])
c=;
else
{
c=;
return c;
}
left--;
right++;
while(left>=&&right<n&&str[left]==str[right])
{
left--;
right++;
c+=;
}
return c;
}
string longestPalindrome(string s)
{
int n=s.size();
if(n==)
return "";
if(n==)
return s;
if(n==&&s[]==s[])
return s;
int ans=;
int start=;
for(int i=;i<n-;i++)
{
int x1=f1(s,i,i,n);
int x2=f2(s,i,i+,n);
//cout<<"i="<<i<<" x1="<< x1<<" x2="<<x2<<endl;
if(max(x1,x2)>ans)
{
ans=max(x1,x2);
//cout<<"ans="<<ans<<endl;
if(ans%==)
start=i-ans/;
else
start=i-(ans-)/;
//cout<<"start="<<start<<endl;
}
}
return s.substr(start,ans);
}
};
还有一个解决方案是马拉车算法
时间复杂度为O(N)!!!
但是我目前也没有掌握,就没有贴出来,怕误导别人
【LeetCode】最长回文子串【动态规划或中心扩展】的更多相关文章
- [LeetCode]最长回文子串 java
题目: 给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为1000. 示例 1: 输入: "babad" 输出: "bab" 注意: ...
- leetcode -- 最长回文子串
题目: 给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为 1000. 示例 1: 输入: "babad" 输出: "bab" 注意: ...
- leetcode-5 最长回文子串(动态规划)
题目要求: * 给定字符串,求解最长回文子串 * 字符串最长为1000 * 存在独一无二的最长回文字符串 求解思路: * 回文字符串的子串也是回文,比如P[i,j](表示以i开始以j结束的子串)是回文 ...
- LeetCode.5-最长回文子串(Longest Palindromic Substring)
这是悦乐书的第342次更新,第366篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Medium级别的第3题(顺位题号是5).给定一个字符串s,找到s中最长的回文子字符串. 您可以假设s ...
- LeetCode最长回文子串
题目: 给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为 1000. 示例 1: 输入: "babad"输出: "bab"注意: & ...
- 【C++】最长回文子串/动态规划
ACM #include <bits/stdc++.h> using namespace std; const int maxn = 1010; char S[maxn]; int dp[ ...
- [LeetCode] 5. 最长回文子串 ☆☆☆(最长子串、动态规划)
最长回文子串 (动态规划法.中心扩展算法) https://leetcode-cn.com/problems/longest-palindromic-substring/solution/xiang- ...
- Leetcode(5)-最长回文子串(包含动态规划以及Manacher算法)
给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为1000. 示例 1: 输入: "babad" 输出: "bab" 注意: &quo ...
- LeetCode(5):最长回文子串
Medium! 题目描述: 给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 长度最长为1000. 示例: 输入: "babad" 输出: "bab&quo ...
随机推荐
- window对象(全局对象)
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Windows 2008R2 安装PostgreSQL 11.6
前些天在CentOS 7.5 下安装了PostgreSQL 11.6.除了在无外网环境下需要另外配置之外,其他没有什么差别.今天主要写一下在Windows下面安装PostgreSQL的问题. 在官网看 ...
- java之大文件分段上传、断点续传
文件上传是最古老的互联网操作之一,20多年来几乎没有怎么变化,还是操作麻烦.缺乏交互.用户体验差. 一.前端代码 英国程序员Remy Sharp总结了这些新的接口 ,本文在他的基础之上,讨论在前端采用 ...
- Linux常用命令合集
常用命令合集 命令选项和参数 Linux中的命令格式为:command [options] [arguments] //中括号表示可选的,即有些命令不需要选项也不需要参数,但有的命令在运行时需要多个 ...
- omnibus-gitlab 架构学习
omnibus-gitlab是gitlab 团队fork 自chef 的omnibus 项目,同时做了一些自定义的开发,omnibus-gitlab 简化了 gitlab 的部署以及维护,同时里边集成 ...
- element ui里面table分页,页数从0开始的怎么做?
需求: 后台请求的接口是从0页开始的,但是pagination是从1开始的,就是在点击pagination的第1页是后台转0 1首先在data里面定义为1,其他地方也是定义1 return { for ...
- CodeMirror在线代码编辑器使用
CodeMirror官网地址为:https://codemirror.net/ CodeMirror作为一款代码编辑器,其应用场景主要是在线网站写代码.如现在的leetcode.洛谷.code-vs等 ...
- rust所有权
所有权与函数 fn main() { let s = String::from("hello"); takes_ownership(s); //s的值移动到函数里 let x = ...
- 【软工实践】Beta冲刺(2/5)
链接部分 队名:女生都队 组长博客: 博客链接 作业博客:博客链接 小组内容 恩泽(组长) 过去两天完成了哪些任务 描述 新增修改用户信息.任务完成反馈等功能API 服务器后端部署,API接口的bet ...
- Devops(三):Docker常用命令
列出镜像列表(docker images) [root@master docker]# docker images REPOSITORY TAG IMAGE ID CREATED SIZE hello ...