每日一题 day40 打卡

Analysis

因为两个序列都是1~n 的全排列,那么两个序列元素互异且相同,也就是说只是位置不同罢了,那么我们通过一个book数组将A序列的数字在B序列中的位置表示出来

因为最长公共子序列是按位向后比对的,所以a序列每个元素在b序列中的位置如果递增,就说明b中的这个数在a中的这个数整体位置偏后,可以考虑纳入LCS——那么就可以转变成nlogn求用来记录新的位置的book数组中的LIS。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 100000+10
#define INF 9187201950435737471
#define rep(i,s,e) for(register int i=s;i<=e;++i)
#define dwn(i,s,e) for(register int i=s;i>=e;--i)
using namespace std;
inline int read()
{
int x=;
bool f=;
char c=getchar();
for(; !isdigit(c); c=getchar()) if(c=='-') f=;
for(; isdigit(c); c=getchar()) x=(x<<)+(x<<)+c-'';
if(f) return x;
return -x;
}
inline void write(int x)
{
if(x<){putchar('-');x=-x;}
if(x>)write(x/);
putchar(x%+'');
}
int n,ans=;
int a[maxn],b[maxn],book[maxn],last[maxn];
signed main()
{
n=read();
rep(i,,n) a[i]=read(),book[a[i]]=i;
rep(i,,n) b[i]=read();
last[]=book[b[]];
rep(i,,n)
{
if(book[b[i]]>=last[ans]) last[++ans]=book[b[i]];
else
{
int num=upper_bound(last+,last+ans+,book[b[i]])-last;
last[num]=book[b[i]];
}
}
write(ans);
return ;
}

请各位大佬斧正(反正我不认识斧正是什么意思)

洛谷 P1439 【模板】最长公共子序列 题解的更多相关文章

  1. 洛谷1439:最长公共子序列(nlogn做法)

    洛谷1439:最长公共子序列(nlogn做法) 题目描述: 给定两个序列求最长公共子序列. 这两个序列一定是\(1\)~\(n\)的全排列. 数据范围: \(1\leq n\leq 10^5\) 思路 ...

  2. 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)

    洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...

  3. 洛谷 P2516 [HAOI2010]最长公共子序列

    题目传送门 解题思路: 第一问要求最长公共子序列,直接套模板就好了. 第二问要求数量,ans[i][j]表示第一个字符串前i个字符,第二个字符串前j个字符的最长公共子序列的数量 如果f[i][j]是由 ...

  4. 洛谷P2516 [HAOI2010]最长公共子序列

    题目描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X="x0,x1,-,xm-1",序列Y=& ...

  5. 【Luogu P1439】最长公共子序列(LCS)

    Luogu P1439 令f[i][j]表示a的前i个元素与b的前j个元素的最长公共子序列 可以得到状态转移方程: if (a[i]==b[j]) dp[i][j]=dp[i-1][j-1]+1; d ...

  6. P2516 [HAOI2010]最长公共子序列 题解(LCS)

    题目链接 最长公共子序列 解题思路 第一思路: 1.用\(length[i][j]\)表示\(a\)串的前\(i\)个字符与\(b\)串的前\(j\)个字符重叠的最长子串长度 2.用\(num[i][ ...

  7. 洛谷 P4484 - [BJWC2018]最长上升子序列(状压 dp+打表)

    洛谷题面传送门 首先看到 LIS 我们可以想到它的 \(\infty\) 种求法(bushi),但是对于此题而言,既然题目出这样一个数据范围,硬要暴搜过去也不太现实,因此我们需想到用某种奇奇怪怪的方式 ...

  8. 【洛谷P4309】最长上升子序列

    题目大意:给定一个序列,初始为空.现在我们将 1 到 N 的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? 题解:学会了 rope 操 ...

  9. P1439 【模板】最长公共子序列 LCS

    P1439 [模板]最长公共子序列 题解 1.RE的暴力DP O(n2) 我们设dp[i][j]表示,S串的第i个前缀和T串的第j个前缀的最长公共子序列. ◦          分情况: ◦      ...

随机推荐

  1. 14.Python略有小成(自由模块)

    Python(模块) 一.模块定义与分类 ​ 我们说一个函数就是一个功能,那么把一些常用的函数放在一个py文件中,这个文件就称之为模块,模块,就是一些列常用功能的集合体,模块就是文件,存放一堆常用的函 ...

  2. 利用ime-mode设置文本框只能输入正整数

    html: <input type="text" id="packageratio"style="ime-mode: disabled;&quo ...

  3. .Net 取树形结构的数据

    最近遇到了无限层级数据要读取的问题,所有就写了个. 根据当前所有父级,查询出子级内容 private void GetTypeOfWorkforTree(out List<TypeOfWorkD ...

  4. python-django中使用事务以及小坑

    django中使用事务 一.导入事务模块 from django.db import transaction 二.对相应的业务进行事务操作 方式一:为整个函数进行事务操作 @transaction.a ...

  5. Mac 达芬奇【Davinci Resolve】 无法添加媒体

    参考 : https://zhidao.baidu.com/question/182613491787331404.html 打开软件,点击默认的未命名项目: 点击左上角图中箭头位置: 选中系统-&g ...

  6. kubernetes第一章--介绍

  7. 浏览器输入 URL 之后的链路

    视频 [序章]要找到B站有多难?秃头警告 脑图 一次完整的 Http 事务 文章 技术普及帖:你刚才在淘宝上买了一件东西 Github-从URL输入到页面展现到底发生什么? 总结的非常全 前端面试题: ...

  8. 3.怪异盒模型box-sizing?弹性盒模型|盒布局?【HTML】

    在标准模式下的盒模型:盒子总宽度/高度=width/height+padding+border+margin 在怪异模式下的盒模型下,盒子的总宽度和高度是包含内边距padding和边框border宽度 ...

  9. (五)react-native开发系列之Android原生交互

    react-native可以做web与原生的交互,这是使用react-native开发项目的主要目的之一,也是主要优势,用rn而不用原生交互则毫无价值,这篇文章用来记录在项目中rn的原生交互使用过程. ...

  10. 【hbase】hbase-2.2.1配置独立的zookeeper的安装与测试

    下载hbase-2.2.1-bin.tar.gz并执行安装命令: [hadoop@hadoop01 ~]$ tar -zxvf hbase--bin.tar.gz 查看安装目录: [hadoop@ha ...