【BZOJ 4004】 装备购买(高斯消元+贪心)
装备购买
题目
脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示
(1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着
怎样才能花尽量少的钱买尽量多的装备。对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是
说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的必要了。严格的定义是,如果
脸哥买了 zi1,.....zip这 p 件装备,那么对于任意待决定的 zh,不存在 b1,....,bp 使得 b1zi1 + ... + bpzi
p = zh(b 是实数),那么脸哥就会买 zh,否则 zh 对脸哥就是无用的了,自然不必购买。举个例子,z1 =(1; 2;
3);z2 =(3; 4; 5);zh =(2; 3; 4),b1 =1/2,b2 =1/2,就有 b1z1 + b2z2 = zh,那么如果脸哥买了 z1 和 z2
就不会再买 zh 了。脸哥想要在买下最多数量的装备的情况下花最少的钱,你能帮他算一下吗?
Input
第一行两个数 n;m。接下来 n 行,每行 m 个数,其中第 i 行描述装备 i 的各项属性值。接下来一行 n 个数,
其中 ci 表示购买第 i 件装备的花费。
Output
一行两个数,第一个数表示能够购买的最多装备数量,第二个数表示在购买最多数量的装备的情况下的最小花费
Sample Input
3 3
1 2 3
3 4 5
2 3 4
1 1 2
Sample Output
2 2
Hint
如题目中描述,选择装备 1 装备 2,装备 1 装备 3,装备 2 装备 3 均可,但选择装备 1 和装备 2 的花费最小,为 2。对于 100% 的数据, 1 <= n;m <= 500; 0 <= aj <= 1000。
解析
一个装备的属性如果能被其它装备表出,那么这件装备就不需要了。如此就将此问题转化为一个线性基的数学模型。
在一个线性空间内,如果同时存在几个方案,那么就选择花费最小的。贪心策略即可。
另外本题的eps值得商榷,注意要开long double,如果用scanf输入要注意格式!
#include<bits/stdc++.h>
#define ri register int
#define double long double
#define eps 1e-4
using namespace std;
int n,m,cnt;
struct node{
double u[1999];
int cost;
}a[1000];
int sum;
int p[1000];
bool cmp(node a,node b){
return a.cost<b.cost;
}
int main()
{
scanf("%d%d",&n,&m);
for(ri i=1;i<=n;i++)
{
for(ri j=1;j<=m;j++)
{
scanf("%Lf",&a[i].u[j]);//这个坑点也是够了...
}
}
for(ri i=1;i<=n;i++)scanf("%d",&a[i].cost);
sort(a+1,a+1+n,cmp);
for(ri i=1;i<=n;i++)
{
for(ri j=1;j<=m;++j)
{
if(fabs(a[i].u[j])>eps)
{
if(!p[j])
{
p[j]=i;
cnt++;
sum+=a[i].cost;
break;
}
else
{
double t=a[i].u[j]/a[p[j]].u[j];
for(ri k=j;k<=m;k++)
{
a[i].u[k]-=t*a[p[j]].u[k];
}
}
}
}
}
printf("%d %d\n",cnt,sum);
return 0;
}
【BZOJ 4004】 装备购买(高斯消元+贪心)的更多相关文章
- BZOJ 4004 JLOI2015 装备购买 高斯消元+线性基
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4004 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装 ...
- BZOJ 4004: [JLOI2015]装备购买 高斯消元解线性基
BZOJ严重卡精,要加 $long$ $double$ 才能过. 题意:求权和最小的极大线性无关组. 之前那个方法解的线性基都是基于二进制拆位的,这次不行,现在要求一个适用范围更广的方法. 考虑贪心 ...
- BZOJ 4004: [JLOI2015]装备购买 [高斯消元同余 线性基]
和前两(一)题一样,不过不是异或方程组了..... 然后bzoj的新数据是用来卡精度的吧..... 所有只好在模意义下做啦 只是巨慢无比 #include <iostream> #incl ...
- BZOJ 3143 高斯消元+贪心....
思路: 先算一下每条边经过次数的期望 转化为每个点经过次数的期望 边的期望=端点的期望/度数 统计一下度数 然后高斯消元 贪心附边权--. //By SiriusRen #include <cm ...
- P3265 [JLOI2015]装备购买(高斯消元+贪心,线性代数)
题意; 有n个装备,每个装备有m个属性,每件装备的价值为cost. 小哥,为了省钱,如果第j个装备的属性可以由其他准备组合而来.比如 每个装备属性表示为, b1, b2.......bm . 它可以由 ...
- BZOJ 3270 && BZOJ 1778 (期望DP && 高斯消元)
BZOJ 3270 :设置状态为Id(x,y)表示一人在x,一人在y这个状态的概率. 所以总共有n^2种状态. p[i]表示留在该点的概率,Out[i]=(1-p[i])/Degree[i]表示离开该 ...
- [HNOI2013] 游走 - 概率期望,高斯消元,贪心
假如我们知道了每条边经过的期望次数,则变成了一个显然的贪心.现在考虑如何求期望次数. 由于走到每个点后各向等概率,很显然一条边的期望次数可以与它的两个端点的期望次数,转化为求点的期望次数 考虑每个点对 ...
- [bzoj 2844]线性基+高斯消元
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2844 又用到线性基+高斯消元的套路题了,因为经过高斯消元以后的线性基有非常好的序关系,所以 ...
- BZOJ 3105 线性基 高斯消元
思路: 按照从大到小排个序 维护两个数组 一个是消元后的 另一个是 按照消元的位置排的 不断 维护从大到小 (呃具体见代码) //By SiriusRen #include <cstdio> ...
随机推荐
- Java设计模式-Builder构造者模式
介绍: 构造者模式,又称之为建造者模式,建造者模式,单例模式以及工厂模式都属于创建型模式1应用场景 今天学mybatis的时候,知道了SQLSessionFactory使用的是builder模式来生成 ...
- CentOS 7.6 安装Python3.7.2 多版本共存
CentOS 7.6 默认安装了 Python 2.7.5 准备环境 yum install git gcc gcc-c++ make automake autoconf libtool pcre p ...
- 迭代子(Iterator)模式
迭代子模式又叫做游标模式.迭代子模式可以顺序地访问一个聚集中的元素而必暴露聚集的内部表象. 1. 聚集和Java聚集 多个对象在一起形成的总体形成聚集(Aggregate),聚集对象是能够包容一组对 ...
- gevent介绍(转)
原文:https://www.liaoxuefeng.com/wiki/897692888725344/966405998508320 Python通过yield提供了对协程的基本支持,但是不完全.而 ...
- 【题解】Luogu P5471 [NOI2019]弹跳
原题传送门 先考虑部分分做法: subtask1: 暴力\(O(nm)\)枚举,跑最短路 subtask2: 吧一行的点压到vector中并排序,二分查找每一个弹跳装置珂以到达的城市,跑最短路 sub ...
- java异常的基本概念和处理流程
一.异常的基本概念 在java中把导致程序中断运行的情况分为两种,一种就是异常,而另外一种叫做错误.所有异常的基类是Exception,错误的基类是Error.Exception是在java程序中可以 ...
- 上传文件大小与时间 Web.Config文件 httpRuntime 限制
httpRuntime <httpRuntime executionTimeout="90" maxRequestLength="40960" useF ...
- APS.NET MVC + EF (00)---C#基础
命名参数 命名参数是把参数附上参数名称,这样在调用方法的时候不必按照原来的参数顺序填写参数,只需要对应好参数的名称也能完成方法调用. static void Main(string[] args) { ...
- 网络编程之网络架构及其演变过程、互联网与互联网的组成、OSI七层协议、socket抽象层
目录 网络架构及其演变过程 单机架构 CS架构 BS架构 BS架构和CS架构的区别 C/S架构的优缺点: B/S架构的优缺点: 互联网与互联网的组成 互联网的组成(教科书版) 互联网的组成(科普版) ...
- .NET CORE 动态加载 DLL 的问题
有个系统, 需要适应不同类型的数据库(同时只使用其中一种),如果把数据库操作层提取出来,然后针对不同的数据库使用不同的 DLL, 再根据不同的项目使用不同的库, 在以前的 ASP.NET 中, 直接把 ...