原文:https://foofish.net/iterators-vs-generators.html

本文源自RQ作者的一篇博文,原文是Iterables vs. Iterators vs. Generators,俺写的这篇文章是按照自己的理解做的参考翻译,算不上是原文的中译版本,推荐阅读原文,谢谢网友指正。

在了解Python的数据结构时,容器(container)、可迭代对象(iterable)、迭代器(iterator)、生成器(generator)、列表/集合/字典推导式(list,set,dict comprehension)众多概念参杂在一起,难免让初学者一头雾水,我将用一篇文章试图将这些概念以及它们之间的关系捋清楚。

容器(container)

容器是一种把多个元素组织在一起的数据结构,容器中的元素可以逐个地迭代获取,可以用in, not in关键字判断元素是否包含在容器中。通常这类数据结构把所有的元素存储在内存中(也有一些特例,并不是所有的元素都放在内存,比如迭代器和生成器对象)在Python中,常见的容器对象有:

  • list, deque, ....
  • set, frozensets, ....
  • dict, defaultdict, OrderedDict, Counter, ....
  • tuple, namedtuple, …
  • str

容器比较容易理解,因为你就可以把它看作是一个盒子、一栋房子、一个柜子,里面可以塞任何东西。从技术角度来说,当它可以用来询问某个元素是否包含在其中时,那么这个对象就可以认为是一个容器,比如 list,set,tuples都是容器对象:

>>> assert 1 in [1, 2, 3]      # lists
>>> assert 4 not in [1, 2, 3]
>>> assert 1 in {1, 2, 3} # sets
>>> assert 4 not in {1, 2, 3}
>>> assert 1 in (1, 2, 3) # tuples
>>> assert 4 not in (1, 2, 3)

询问某元素是否在dict中用dict的中key:

>>> d = {1: 'foo', 2: 'bar', 3: 'qux'}
>>> assert 1 in d
>>> assert 'foo' not in d # 'foo' 不是dict中的元素

询问某substring是否在string中:

>>> s = 'foobar'
>>> assert 'b' in s
>>> assert 'x' not in s
>>> assert 'foo' in s

尽管绝大多数容器都提供了某种方式来获取其中的每一个元素,但这并不是容器本身提供的能力,而是可迭代对象赋予了容器这种能力,当然并不是所有的容器都是可迭代的,比如:Bloom filter,虽然Bloom filter可以用来检测某个元素是否包含在容器中,但是并不能从容器中获取其中的每一个值,因为Bloom filter压根就没把元素存储在容器中,而是通过一个散列函数映射成一个值保存在数组中。

可迭代对象(iterable)

刚才说过,很多容器都是可迭代对象,此外还有更多的对象同样也是可迭代对象,比如处于打开状态的files,sockets等等。但凡是可以返回一个迭代器的对象都可称之为可迭代对象,听起来可能有点困惑,没关系,先看一个例子:

>>> x = [1, 2, 3]
>>> y = iter(x)
>>> z = iter(x)
>>> next(y)
1
>>> next(y)
2
>>> next(z)
1
>>> type(x)
<class 'list'>
>>> type(y)
<class 'list_iterator'>

这里x是一个可迭代对象,可迭代对象和容器一样是一种通俗的叫法,并不是指某种具体的数据类型,list是可迭代对象,dict是可迭代对象,set也是可迭代对象。yz是两个独立的迭代器,迭代器内部持有一个状态,该状态用于记录当前迭代所在的位置,以方便下次迭代的时候获取正确的元素。迭代器有一种具体的迭代器类型,比如list_iteratorset_iterator。可迭代对象实现了__iter__方法,该方法返回一个迭代器对象。

当运行代码:

x = [1, 2, 3]
for elem in x:
...

实际执行情况是:

反编译该段代码,你可以看到解释器显示地调用GET_ITER指令,相当于调用iter(x)FOR_ITER指令就是调用next()方法,不断地获取迭代器中的下一个元素,但是你没法直接从指令中看出来,因为他被解释器优化过了。

>>> import dis
>>> x = [1, 2, 3]
>>> dis.dis('for _ in x: pass')
1 0 SETUP_LOOP 14 (to 17)
3 LOAD_NAME 0 (x)
6 GET_ITER
>> 7 FOR_ITER 6 (to 16)
10 STORE_NAME 1 (_)
13 JUMP_ABSOLUTE 7
>> 16 POP_BLOCK
>> 17 LOAD_CONST 0 (None)
20 RETURN_VALUE

迭代器(iterator)

那么什么迭代器呢?它是一个带状态的对象,他能在你调用next()方法的时候返回容器中的下一个值,任何实现了__iter____next__()(python2中实现next())方法的对象都是迭代器,__iter__返回迭代器自身,__next__返回容器中的下一个值,如果容器中没有更多元素了,则抛出StopIteration异常,至于它们到底是如何实现的这并不重要。

所以,迭代器就是实现了工厂模式的对象,它在你每次你询问要下一个值的时候给你返回。有很多关于迭代器的例子,比如itertools函数返回的都是迭代器对象。

生成无限序列:

>>> from itertools import count
>>> counter = count(start=13)
>>> next(counter)
13
>>> next(counter)
14

从一个有限序列中生成无限序列:

>>> from itertools import cycle
>>> colors = cycle(['red', 'white', 'blue'])
>>> next(colors)
'red'
>>> next(colors)
'white'
>>> next(colors)
'blue'
>>> next(colors)
'red'

从无限的序列中生成有限序列:

>>> from itertools import islice
>>> colors = cycle(['red', 'white', 'blue']) # infinite
>>> limited = islice(colors, 0, 4) # finite
>>> for x in limited:
... print(x)
red
white
blue
red

为了更直观地感受迭代器内部的执行过程,我们自定义一个迭代器,以斐波那契数列为例:

class Fib:
def __init__(self):
self.prev = 0
self.curr = 1 def __iter__(self):
return self def __next__(self):
value = self.curr
self.curr += self.prev
self.prev = value
return value >>> f = Fib()
>>> list(islice(f, 0, 10))
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Fib既是一个可迭代对象(因为它实现了__iter__方法),又是一个迭代器(因为实现了__next__方法)。实例变量prevcurr用户维护迭代器内部的状态。每次调用next()方法的时候做两件事:

  1. 为下一次调用next()方法修改状态
  2. 为当前这次调用生成返回结果

迭代器就像一个懒加载的工厂,等到有人需要的时候才给它生成值返回,没调用的时候就处于休眠状态等待下一次调用。

生成器(generator)

生成器算得上是Python语言中最吸引人的特性之一,生成器其实是一种特殊的迭代器,不过这种迭代器更加优雅。它不需要再像上面的类一样写__iter__()__next__()方法了,只需要一个yiled关键字。 生成器一定是迭代器(反之不成立),因此任何生成器也是以一种懒加载的模式生成值。用生成器来实现斐波那契数列的例子是:

def fib():
prev, curr = 0, 1
while True:
yield curr
prev, curr = curr, curr + prev >>> f = fib()
>>> list(islice(f, 0, 10))
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

fib就是一个普通的python函数,它特殊的地方在于函数体中没有return关键字,函数的返回值是一个生成器对象。当执行f=fib()返回的是一个生成器对象,此时函数体中的代码并不会执行,只有显示或隐示地调用next的时候才会真正执行里面的代码。

生成器在Python中是一个非常强大的编程结构,可以用更少地中间变量写流式代码,此外,相比其它容器对象它更能节省内存和CPU,当然它可以用更少的代码来实现相似的功能。现在就可以动手重构你的代码了,但凡看到类似:

def something():
result = []
for ... in ...:
result.append(x)
return result

都可以用生成器函数来替换:

def iter_something():
for ... in ...:
yield x

生成器表达式(generator expression)

生成器表达式是列表推倒式的生成器版本,看起来像列表推导式,但是它返回的是一个生成器对象而不是列表对象。

>>> a = (x*x for x in range(10))
>>> a
<generator object <genexpr> at 0x401f08>
>>> sum(a)
285

总结

  • 容器是一系列元素的集合,str、list、set、dict、file、sockets对象都可以看作是容器,容器都可以被迭代(用在for,while等语句中),因此他们被称为可迭代对象。
  • 可迭代对象实现了__iter__方法,该方法返回一个迭代器对象。
  • 迭代器持有一个内部状态的字段,用于记录下次迭代返回值,它实现了__next____iter__方法,迭代器不会一次性把所有元素加载到内存,而是需要的时候才生成返回结果。
  • 生成器是一种特殊的迭代器,它的返回值不是通过return而是用yield

参考链接:https://docs.python.org/2/library/stdtypes.html#iterator-types

MARSGGBO♥原创







2019-7-17

理解迭代器,生成器,yield,可迭代对象的更多相关文章

  1. Python之列表生成式、生成器、可迭代对象与迭代器

    本节内容 语法糖的概念 列表生成式 生成器(Generator) 可迭代对象(Iterable) 迭代器(Iterator) Iterable.Iterator与Generator之间的关系 一.语法 ...

  2. 【转】Python之列表生成式、生成器、可迭代对象与迭代器

    [转]Python之列表生成式.生成器.可迭代对象与迭代器 本节内容 语法糖的概念 列表生成式 生成器(Generator) 可迭代对象(Iterable) 迭代器(Iterator) Iterabl ...

  3. day4 内置函数 迭代器&生成器 yield总结 三元运算 闭包

    内置函数: 内置函数 # abs()返回一个数字的绝对值.如果给出复数,返回值就是该复数的模. b = -100 print(b) print(abs(b)) # all() 所有为真才为真,只要有一 ...

  4. python生成器(generator)、迭代器(iterator)、可迭代对象(iterable)区别

    三者联系 迭代器(iterator)是一个更抽象的概念,任何对象,如果它的类有next方法(next python3)和__iter__方法返回自己本身,即为迭代器 通常生成器是通过调用一个或多个yi ...

  5. 迭代器,生成器,yield,yield from理解

    迭代器 说到迭代器就得想说可迭代对象Iterable,实现了__iter__()方法的对象都是可迭代对象,例如很多容器,list ,set, tuples.使用iter方法可以把一个可迭代对象变成迭代 ...

  6. 【Python之路】特别篇--生成器(constructor)、迭代器(iterator)、可迭代对象(iterable)

    生成器(constructor) 生成器函数在Python中与迭代器协议的概念联系在一起.包含yield语句的函数会被特地编译成生成器 !!! 当函数被调用时,他们返回一个生成器对象,这个对象支持迭代 ...

  7. Python 迭代器、生成器、可迭代对象

    迭代器 1 #迭代器定义: 2 #类中得有__iter__和__next__两个方法 3 #__iter__方法放回对象本身,即:self(是迭代器对象) 4 #__next__方法,返回下一个数据, ...

  8. Python入门之迭代器/生成器/yield的表达方式/面向过程编程

    本章内容 迭代器 面向过程编程 一.什么是迭代 二.什么是迭代器 三.迭代器演示和举例 四.生成器yield基础 五.生成器yield的表达式形式 六.面向过程编程 ================= ...

  9. Two---python循环语句/迭代器生成器/yield与return/自定义函数与匿名函数/参数传递

    python基础02 条件控制 python条件语句是通过一条或多条语句的执行结果(Ture或者False)来执行的代码块 python中用elif代替了else if,所以if语句的关键字为:if- ...

随机推荐

  1. Spring配置中<bean>的id和name属性

    在BeanFactory的配置中,<bean>是我们最常见的配置项,它有两个最常见的属性,即id和name,最近研究了一下,发现这两个属性还挺好玩的,特整理出来和大家一起分享. 1.id属 ...

  2. CentOS环境设置Hbase自启动

    1.在/etc/init.d/目录创建hbase文件 #!/bin/bash # chkconfig: #export JAVA_HOME=/usr/local/jdk1.8.0_191 HBASE_ ...

  3. SQL中join连接查询时条件放在on后与where后的区别

    数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户. 在使用left jion时,on和where条件的区别如下: 1. on条件是在生成临时表时使用的条 ...

  4. selenium爬虫入门(selenium+Java+chrome)

    selenium是一个开源的测试化框架,可以直接在浏览器中运行,就像用户直接操作浏览器一样,十分方便.它支持主流的浏览器:chrome,Firefox,IE等,同时它可以使用Java,python,J ...

  5. Java8 新特性 默认方法

    默认方法为什么出现 默认方法的出现是因为在java8设计的过程中,因为加入了Lamdba表达式,和函数式接口,所以在非常多的接口里面要加入新的方法,但是如果在接口里面直接加入新的方法,那么以前写的所有 ...

  6. [转帖]知新之--12-factors

    知新之--12-factors https://blog.csdn.net/weixin_34233421/article/details/85819756 12-factors I. 基准代码 一份 ...

  7. KAFKA 节点配置问题

    -- ::, INFO o.a.j.e.StandardJMeterEngine: Running the test! -- ::, INFO o.a.j.s.SampleEvent: List of ...

  8. C++指针与数组、函数、动态内存分配

    C++指针 指针是用来存储地址的变量. 对于二维数组来说: a:代表的是首行地址: *a:代表的是首元素地址: **a:首元素: a+1:第二行地址: *a+2:首先*a是首元素地址,在首元素地址上+ ...

  9. (三)Django继承AbstractUser新建User Model时出现fields.E304错误

    错误详情: auth.User.groups: (fields.E304) Reverse accessor for ‘User.groups’ clashes with reverse access ...

  10. 给定一个长度为N的数组,找出出现次数大于n/2,n/3的数,要求时间复杂度O(n),空间复杂度O(1)

    先讨论出现次数大于n/2的数字,如果这样的数字存在,那么这个数出现的次数大于其他数出现的次数的总和. 在数组A中,我们定义两个数据集合a1,a2.a1为出现次数大于n/2的数的集合,a2为其余数组成的 ...