矩阵乘法(快速幂)

为说明方便,这里让\(k\)为点数,\(n\)为路径长度。

先将点都离散化,这样最后的点只有\(2k\)个。

先考虑一种暴力,每次用\(O(k^3)\)的复杂度来暴力更新,设当前长度\(l\)点的两两最短路矩阵为\(S\),现在要转移到\(l+1\)时的最短路矩阵\(T\)。我们考虑用每条边更新,对于某条从\(x\)连向\(y\)的长度为\(z\)的边,对于任一点\(i\),有:

\[T[i][y]=min(T[i][y],T[i][x]+z)
\]

另外,每次更新时,\(T\)矩阵的初始值为无限大。

然后我们就可以用\(O(nk^3)\)的复杂度去做这道题了。但这明显不行。

我们设没有直接连通的两个点距离为无限大,构建出邻接矩阵\(D\),就可以魔改一下上面的式子,改成:

\[T[i][j]=min(T[i][x]+D[x][j])
\]

其中\(x\)为自己枚举的中间节点,然后就出现的如下的代码:

for(int i=0;i<k;++i){
for(int j=0;j<k;++j){
for(int l=0;l<k;++l){
ret.a[i][j]=min(ret.a[i][j],a.a[i][l]+b.a[l][j]);
}
}
}

发现,这不是就是矩阵乘法吗?

因为取最小值满足可加性,所以使用矩阵快速幂是可行的。这样,我们就能把复杂度优化为\(O(lognk^3)\)

然后,我就不开O2过不了了。

我们发现从源点能到达的点数最多只有\(k+1\)(因为即使走过每条边都发现一个新节点,也只能发现这么多点。)所以我们可以只用源点能到的点进行离散化,可以将点数从\(2k\)到\(k\),从而在矩阵乘法时省掉8倍常数,然后就可以不开O2AC了。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1000010,M=200;
int n,k,s,t;
struct data{
ll a[M][M];
data(){memset(a,0,sizeof a);}
}a;
data operator*(const data&a,const data&b){
data ret;
memset(ret.a,0x3f,sizeof ret.a);
for(int i=0;i<k;++i){
for(int j=0;j<k;++j){
for(int l=0;l<k;++l){
ret.a[i][j]=min(ret.a[i][j],a.a[i][l]+b.a[l][j]);
}
}
}
return ret;
}
data mpow(data a,int n){
data ret=a;
n--;
while(n){
if(n&1)ret=ret*a;
n/=2;
a=a*a;
}
return ret;
}
int tot,bian[N],nxt[N],head[N];
void add(int x,int y){
tot++,bian[tot]=y,nxt[tot]=head[x],head[x]=tot;
}
struct edge{
int x,y;
ll z;
}e[M];
int vis[N];
vector<int>v;
void dfs(int x){
if(vis[x])return;
v.push_back(x);
vis[x]=1;
for(int i=head[x];i;i=nxt[i]){
int y=bian[i];
dfs(y);
}
}
int main(){
cin>>n>>k>>s>>t;
memset(a.a,0x3f,sizeof a.a);
for(int i=1;i<=k;++i){
scanf("%lld%d%d",&e[i].z,&e[i].x,&e[i].y);
add(e[i].x,e[i].y);
add(e[i].y,e[i].x);
}
dfs(s);
sort(v.begin(),v.end());
for(int i=1;i<=k;++i){
if(!vis[e[i].x])continue;
int x=lower_bound(v.begin(),v.end(),e[i].x)-v.begin(),
y=lower_bound(v.begin(),v.end(),e[i].y)-v.begin();
a.a[y][x]=a.a[x][y]=min(a.a[x][y],e[i].z); }
data ret=mpow(a,n);
s=lower_bound(v.begin(),v.end(),s)-v.begin();
t=lower_bound(v.begin(),v.end(),t)-v.begin();
cout<<ret.a[s][t]<<endl;
}

zjoj1706: [usaco2007 Nov]relays 奶牛接力跑的更多相关文章

  1. BZOJ_[usaco2007 Nov]relays 奶牛接力跑_离散化+倍增弗洛伊德

    BZOJ_[usaco2007 Nov]relays 奶牛接力跑_离散化+倍增弗洛伊德 Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们 ...

  2. 【BZOJ1706】[usaco2007 Nov]relays 奶牛接力跑 矩阵乘法

    [BZOJ1706][usaco2007 Nov]relays 奶牛接力跑 Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项 ...

  3. BZOJ 1706: [usaco2007 Nov]relays 奶牛接力跑

    Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项目.至于进行接力跑的地点 自然是在牧场中现有的T(2 <= T < ...

  4. bzoj 1706: [usaco2007 Nov]relays 奶牛接力跑——倍增floyd

    Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项目.至于进行接力跑的地点 自然是在牧场中现有的T(2 <= T < ...

  5. 【bzoj1706】[usaco2007 Nov]relays 奶牛接力跑 离散化+倍增Floyd

    题目描述 FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项目.至于进行接力跑的地点 自然是在牧场中现有的T(2 <= T <= 100) ...

  6. 【BZOJ】1706: [usaco2007 Nov]relays 奶牛接力跑

    [题意]给定m条边的无向图,起点s,终点t,要求找出s到t恰好经过n条边的最短路径.n<=10^6,m<=100. [算法]floyd+矩阵快速幂 [题解] 先对点离散化,得到点数N. 对 ...

  7. bzoj1706: [Usaco2007 Nov]relays 奶牛接力跑 (Floyd+新姿势)

    题目大意:有t(t<=100)条无向边连接两点,求s到e刚好经过n(n<=10^7)条路径的最小距离. 第一反应分层图,但是一看n就懵逼了,不会写.看了题解之后才知道可以这么玩... 首先 ...

  8. [bzoj1706] [usaco2007 Nov]relays 奶牛接力跑

    大概是叫倍增Floyd? 显然最多200个点...f[i][j][k]表示从j到k,走2^i步的最小路程.就随便转移了.. 查询的话就是把n二进制位上是1的那些都并起来. #include<cs ...

  9. 【bzoj1706】[usaco2007 Nov]relays 奶牛接力跑

    题意 给出一张无向图,求出恰巧经过n条边的最短路. 题解 考虑先离散化,那么点的个数只会有202个最多.于是复杂度里面就可以有一个\(n^3\).考虑构造矩阵\(d^1\)表示经过一条边的最短路,那么 ...

随机推荐

  1. Modelsim——显示状态机名称的方法

    方法在本人博客<状态机的Verilog写法>已经写明,为了方便查看,特意拎出来. 方法1: Testbench 设计文件含有状态机时,对应的仿真文件testbench里增加一段参数转ASC ...

  2. VirtualBox安装文档教程

    1找到安装包双击打开 2 3 这里可以更改安装路径 4 5 6 7 等待安装 8

  3. git学习笔记 ---删除文件

    在Git中,删除也是一个修改操作,我们实战一下,先添加一个新文件test.txt到Git并且提交: $ git add test.txt $ git commit -m "add test. ...

  4. go 学习笔记(4) import

    package main import ( f "fmt" ) const NAME string = "imooc" var a string = " ...

  5. 转 让NET C# 程序独立运行(脱离 .NET Framework运行,绿色运行) 未验证

    但是.net版本众多.而且.NET Framework框架很大.拖着一个大大的.net Framework总是让人很郁闷. 在网上找呀找呀.找到另一个.NET Framework 替代方案.Mono. ...

  6. 学习笔记之CloudCompare

    CloudCompare - Open Source project https://www.danielgm.net/cc/ 3D point cloud and mesh processing s ...

  7. python3 中的try 异常调试与 raise 异常抛出

    一.什么是异常? 异常即是一个事件,该事件会在程序执行过程中发生,影响了程序的正常执行. 一般情况下,在Python无法正常处理程序时就会发生一个异常. 异常是Python对象,表示一个错误. 当Py ...

  8. 如何在SAP UI5应用里添加使用摄像头拍照的功能

    昨天Jerry的文章 纯JavaScript实现的调用设备摄像头并拍照的功能 介绍了纯JavaScript借助WebRTC API来开发支持调用设备的摄像头拍照的web应用.而我同事遇到的实际情况是, ...

  9. FastDFS+Nginx搭建Java分布式文件系统

    一.FastDFS FastDFS是用c语言编写的一款开源的分布式文件系统.FastDFS为互联网量身定制,充分考虑了冗余备份.负载均衡.线性扩容等机制,并注重高可用.高性能等指标,使用FastDFS ...

  10. scrapy 用pycharm调试

    1. 用pycharm打开scrapy项目,随便右击一个.py文件,选择Debug "***" 2. pycharm 右上角点击刚才debug的文件,选择Edit Configur ...