题目背景

在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板。这是一张有8个大小相同的格子的魔板:

1 2 3 4

8 7 6 5

题目描述

我们知道魔板的每一个方格都有一种颜色。这8种颜色用前8个正整数来表示。可以用颜色的序列来表示一种魔板状态,规定从魔板的左上角开始,沿顺时针方向依次取出整数,构成一个颜色序列。对于上图的魔板状态,我们用序列(1,2,3,4,5,6,7,8)来表示。这是基本状态。

这里提供三种基本操作,分别用大写字母“A”,“B”,“C”来表示(可以通过这些操作改变魔板的状态):

“A”:交换上下两行;

“B”:将最右边的一列插入最左边;

“C”:魔板中央四格作顺时针旋转。

下面是对基本状态进行操作的示范:

A: 8 7 6 5

1 2 3 4

B: 4 1 2 3

5 8 7 6

C: 1 7 2 4

8 6 3 5

对于每种可能的状态,这三种基本操作都可以使用。

你要编程计算用最少的基本操作完成基本状态到目标状态的转换,输出基本操作序列。

输入格式

只有一行,包括8个整数,用空格分开(这些整数在范围 1——8 之间)不换行,表示目标状态。

输出格式

Line 1: 包括一个整数,表示最短操作序列的长度。

Line 2: 在字典序中最早出现的操作序列,用字符串表示,除最后一行外,每行输出60个字符。

输入输出样例

输入 #1复制

2 6 8 4 5 7 3 1 
输出 #1复制

7
BCABCCB

说明/提示

题目翻译来自NOCOW。

USACO Training Section 3.2

解析:-----BFS宽搜-----

对于状态采用了字符串的存储是采用了将八个数字压成一个字符串的方式
例如初始状态为"12345678",而字符串存储为"12348765" 。
然后根据三个变换规则ABC进行变换
直到变成了目标状态
注意目标状态也要第二部分翻转
例如"26845731",存储为"26841375"。

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
#include<iomanip>
#include<cstdlib>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<vector>
#define LL long long
#define re register
#define Max 100001
struct MoBan {
std::string p;
std::string str;
int step;
};
std::queue<MoBan>q;
std::string D;
int ans;
std::map<std::string,int>m;
std::string BFS()
{
MoBan now,net;
while(!q.empty()) {
now=q.front();q.pop();
std::string str=now.str;
int t=now.step;
std::string p=now.p;
if(str==D) {
ans=t;
return p;
break;
}
++t;
//A
std::string d="";
for(re int i = ; i <= ; ++ i) d+=str[i];
for(re int i = ; i <= ; ++ i) d+=str[i];
net.str=d;net.p=p+"A";
net.step=t;
if(m[d]!=) q.push(net),m[d]=;
//B
std::string a="";
a+=str[];
for(re int i = ; i < ; ++ i) a+=str[i];
a+=str[];
for(re int i = ; i < ; ++ i) a+=str[i];
net.str=a;net.p=p+"B";
if(m[a]!=) q.push(net),m[a]=;
//C
std::string c="";
c+=str[],c+=str[],c+=str[],c+=str[],c+=str[],c+=str[],c+=str[],c+=str[];
net.str=c;net.p=p+"C";
if(m[c]!=) q.push(net),m[c]=;
}
}
int main()
{
char ch[];std::string str="";
for(re int i = ; i <= ; ++ i) std::cin >> ch[i];
for(re int i = ; i <= ; ++ i) D+=ch[i];
for(re int i = ; i >= ; -- i) D+=ch[i];
MoBan now;m[str]=;
now.p="";now.step=;now.str=str;q.push(now);std::string p=BFS();
printf("%d\n",ans);
int len=p.length();std::cout << p[];
for(re int i = ; i < len ; ++ i) {
std::cout << p[i];
if(i%==) std::cout << '\n';
}
return ;
}

AC代码

洛谷P2730 [IOI]魔板 Magic Squares的更多相关文章

  1. 题解【洛谷P2730】魔板 Magic Squares

    题面 首先我们可以发现,在每一次 BFS 时按照 \(A→B→C\) 的顺序枚举遍历肯定是字典序最小的. 然后就是普通的 BFS 了. 我们考虑使用 \(\text{STL map}\) 来存储起点状 ...

  2. 【简●解】 LG P2730 【魔板 Magic Squares】

    LG P2730 [魔板 Magic Squares] [题目背景] 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 ...

  3. 哈希+Bfs【P2730】 魔板 Magic Squares

    没看过题的童鞋请去看一下题-->P2730 魔板 Magic Squares 不了解康托展开的请来这里-->我这里 至于这题为什么可以用康托展开?(瞎说时间到. 因为只有8个数字,且只有1 ...

  4. 洛谷 P2730 魔板 Magic Squares 解题报告

    P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...

  5. [洛谷P2730] 魔板 Magic Squares

    洛谷题目链接:魔板 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都 ...

  6. 洛谷 P2730 魔板 Magic Squares

    P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...

  7. [USACO3.2]魔板 Magic Squares

    松下问童子,言师采药去. 只在此山中,云深不知处.--贾岛 题目:魔板 Magic Squares 网址:https://www.luogu.com.cn/problem/P2730 这是一张有8个大 ...

  8. 「一本通 1.4 例 2」[USACO3.2]魔板 Magic Squares

    [USACO3.2]魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题 ...

  9. P2730 魔板 Magic Squares

    题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有一种颜色.这8种颜 ...

随机推荐

  1. 洛谷 P1411 树 (树形dp)

    大意: 给定树, 求删除一些边, 使得连通块大小的乘积最大 设$dp_{i,j}$表示只考虑点$i$的子树, $i$所在连通块大小为$j$的最大值. 转移的时候不计算$i$所在连通块的贡献, 留到最后 ...

  2. ElasticSearch监控工具 - cerebro

    官方地址:https://github.com/lmenezes/cerebro 需要有java环境 下载地址:https://github.com/lmenezes/cerebro/releases ...

  3. C# Datatable、DataReader等转化json

    //对象转换为Json字符串 public static string ToJson(object jsonObject) { object objectValue = string.Empty; s ...

  4. 【开发笔记】- 永远不要在MySQL中使用UTF-8

    原文地址:https://mp.weixin.qq.com/s/I3Tkvn8vSyC5lEpD9HzwiA 最近我遇到了一个bug,我试着通过Rails在以“utf8”编码的MariaDB中保存一个 ...

  5. springcloud中gateway的实际应用

    之前我一直用的是Zuul网关,用过gateway以后感觉比Zuul功能还是强大很多. Spring Cloud Gateway是基于Spring5.0,Spring Boot2.0和Project R ...

  6. linux技能点 二

    三.  文件操作:新增,删除,修改,查找,文件属性,文件内容查看,文件辅助命令,打包(解压缩),文件名注意事项.          新增:单文件,目录                         ...

  7. resfframework中修改序列化类的返回值

    在序列化类中重写to_representation(self,instance)方法,这个是返回json对象的方法,返回的是一个待序列化的对象,可以直接对这个类进行定制,有关关联查询也可以在这里进行定 ...

  8. CodeCombat第一关:KITHGARD地牢之KITHGARD精通

    https://www.cnblogs.com/OctoptusLian/p/7397602.html https://www.jianshu.com/p/065581a84879 https://w ...

  9. Mysql【第一课】

  10. zookeeper题目

    1. ZooKeeper是什么?2. ZooKeeper提供了什么?3. Zookeeper文件系统4. ZAB协议?5. 四种类型的数据节点 Znode6. Zookeeper Watcher 机制 ...