题目背景

在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板。这是一张有8个大小相同的格子的魔板:

1 2 3 4

8 7 6 5

题目描述

我们知道魔板的每一个方格都有一种颜色。这8种颜色用前8个正整数来表示。可以用颜色的序列来表示一种魔板状态,规定从魔板的左上角开始,沿顺时针方向依次取出整数,构成一个颜色序列。对于上图的魔板状态,我们用序列(1,2,3,4,5,6,7,8)来表示。这是基本状态。

这里提供三种基本操作,分别用大写字母“A”,“B”,“C”来表示(可以通过这些操作改变魔板的状态):

“A”:交换上下两行;

“B”:将最右边的一列插入最左边;

“C”:魔板中央四格作顺时针旋转。

下面是对基本状态进行操作的示范:

A: 8 7 6 5

1 2 3 4

B: 4 1 2 3

5 8 7 6

C: 1 7 2 4

8 6 3 5

对于每种可能的状态,这三种基本操作都可以使用。

你要编程计算用最少的基本操作完成基本状态到目标状态的转换,输出基本操作序列。

输入格式

只有一行,包括8个整数,用空格分开(这些整数在范围 1——8 之间)不换行,表示目标状态。

输出格式

Line 1: 包括一个整数,表示最短操作序列的长度。

Line 2: 在字典序中最早出现的操作序列,用字符串表示,除最后一行外,每行输出60个字符。

输入输出样例

输入 #1复制

2 6 8 4 5 7 3 1 
输出 #1复制

7
BCABCCB

说明/提示

题目翻译来自NOCOW。

USACO Training Section 3.2

解析:-----BFS宽搜-----

对于状态采用了字符串的存储是采用了将八个数字压成一个字符串的方式
例如初始状态为"12345678",而字符串存储为"12348765" 。
然后根据三个变换规则ABC进行变换
直到变成了目标状态
注意目标状态也要第二部分翻转
例如"26845731",存储为"26841375"。

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
#include<iomanip>
#include<cstdlib>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<vector>
#define LL long long
#define re register
#define Max 100001
struct MoBan {
std::string p;
std::string str;
int step;
};
std::queue<MoBan>q;
std::string D;
int ans;
std::map<std::string,int>m;
std::string BFS()
{
MoBan now,net;
while(!q.empty()) {
now=q.front();q.pop();
std::string str=now.str;
int t=now.step;
std::string p=now.p;
if(str==D) {
ans=t;
return p;
break;
}
++t;
//A
std::string d="";
for(re int i = ; i <= ; ++ i) d+=str[i];
for(re int i = ; i <= ; ++ i) d+=str[i];
net.str=d;net.p=p+"A";
net.step=t;
if(m[d]!=) q.push(net),m[d]=;
//B
std::string a="";
a+=str[];
for(re int i = ; i < ; ++ i) a+=str[i];
a+=str[];
for(re int i = ; i < ; ++ i) a+=str[i];
net.str=a;net.p=p+"B";
if(m[a]!=) q.push(net),m[a]=;
//C
std::string c="";
c+=str[],c+=str[],c+=str[],c+=str[],c+=str[],c+=str[],c+=str[],c+=str[];
net.str=c;net.p=p+"C";
if(m[c]!=) q.push(net),m[c]=;
}
}
int main()
{
char ch[];std::string str="";
for(re int i = ; i <= ; ++ i) std::cin >> ch[i];
for(re int i = ; i <= ; ++ i) D+=ch[i];
for(re int i = ; i >= ; -- i) D+=ch[i];
MoBan now;m[str]=;
now.p="";now.step=;now.str=str;q.push(now);std::string p=BFS();
printf("%d\n",ans);
int len=p.length();std::cout << p[];
for(re int i = ; i < len ; ++ i) {
std::cout << p[i];
if(i%==) std::cout << '\n';
}
return ;
}

AC代码

洛谷P2730 [IOI]魔板 Magic Squares的更多相关文章

  1. 题解【洛谷P2730】魔板 Magic Squares

    题面 首先我们可以发现,在每一次 BFS 时按照 \(A→B→C\) 的顺序枚举遍历肯定是字典序最小的. 然后就是普通的 BFS 了. 我们考虑使用 \(\text{STL map}\) 来存储起点状 ...

  2. 【简●解】 LG P2730 【魔板 Magic Squares】

    LG P2730 [魔板 Magic Squares] [题目背景] 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 ...

  3. 哈希+Bfs【P2730】 魔板 Magic Squares

    没看过题的童鞋请去看一下题-->P2730 魔板 Magic Squares 不了解康托展开的请来这里-->我这里 至于这题为什么可以用康托展开?(瞎说时间到. 因为只有8个数字,且只有1 ...

  4. 洛谷 P2730 魔板 Magic Squares 解题报告

    P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...

  5. [洛谷P2730] 魔板 Magic Squares

    洛谷题目链接:魔板 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都 ...

  6. 洛谷 P2730 魔板 Magic Squares

    P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...

  7. [USACO3.2]魔板 Magic Squares

    松下问童子,言师采药去. 只在此山中,云深不知处.--贾岛 题目:魔板 Magic Squares 网址:https://www.luogu.com.cn/problem/P2730 这是一张有8个大 ...

  8. 「一本通 1.4 例 2」[USACO3.2]魔板 Magic Squares

    [USACO3.2]魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题 ...

  9. P2730 魔板 Magic Squares

    题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有一种颜色.这8种颜 ...

随机推荐

  1. ELK 索引生命周期管理

    kibana 索引配置 管理索引 点击设置 --- Elasticsearch 的 Index management 可以查看 elk 生成的所有索引 (设置,Elasticsearch ,管理) 配 ...

  2. Actions require unique method/path combination for Swagger

    原文:Actions require unique method/path combination for Swagger services.AddSwaggerGen (c => { c.Re ...

  3. 使用 ProcessMonitor 找到进程所操作的文件的路径

    原文:使用 ProcessMonitor 找到进程所操作的文件的路径 很多系统问题都是可以修的,不需要重装系统,但是最近我还是重装了.发现之前正在玩的一款游戏的存档没有了--因为我原有系统的数据并没有 ...

  4. WPS生成多级编号

    需求: 目前标题是标题1,想要 string 是二级标题,并且编号是 2.1 方案: (1)设置string是二级标题 (2)设置多级编号 选中,右击,选择[项目符号和编号] 选择[多级编号],点击[ ...

  5. Object类的toString()和equals()方法

    我们知道,Object类是所有类的父类,因此也被称为根类.祖先.那么,我们就来看一看Object类的最常用的两个方法是如何用的. 1.toString方法: Object类的toString()方法默 ...

  6. Laravel入门及实践,快速上手ThinkSNS+二次开发

    温馨提示: l 本文纯干货,文字和代码居多,且适合零基础Laravel学习者: l 本文会新建一个名为 blog 的 Laravel 程序,这是一个非常简单的博客. l  欢迎随时关注ThinkSNS ...

  7. JAVA基础之事务

    世界万事无简单一说, 每个事情基本上由多个小的事情来完成.有的事情会存在若小的事情不能同时完成的情况就取消所有的小的事情,直至都完成达到预期的效果才算完成!这样就用到了事务操作.在所有的sql语句完成 ...

  8. js计算两个时间差 天 时 分 秒 毫秒

    // 计算两个时间差 dateBegin 开始时间 function timeFn(dateBegin) { //如果时间格式是正确的,那下面这一步转化时间格式就可以不用了 var dateEnd = ...

  9. MySQL MHA--在线主库切换(Online master switch)

    在线主库切换(Online master switch)条件 1.所有节点正常运行,无论时原主还是新主或者其他从库 if ( $#dead_servers >= 0 ) { $log->e ...

  10. linux设备驱动程序-设备树(0)-dtb格式

    linux设备树dtb格式 设备树的一般操作方式是:开发人员根据开发需求编写dts文件,然后使用dtc将dts编译成dtb文件. dts文件是文本格式的文件,而dtb是二进制文件,在linux启动时被 ...