题目描述:

Malek Dance Club

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

As a tradition, every year before IOI all the members of Natalia Fan Club are invited to Malek Dance Club to have a fun night together. Malek Dance Club has 2n members and coincidentally Natalia Fan Club also has 2n members. Each member of MDC is assigned a unique id i from 0 to 2n - 1. The same holds for each member of NFC.

One of the parts of this tradition is one by one dance, where each member of MDC dances with a member of NFC. A dance pair is a pair of numbers (a, b) such that member a from MDC dances with member b from NFC.

The complexity of a pairs' assignment is the number of pairs of dancing pairs (a, b) and (c, d) such that a < c and b > d.

You are given a binary number of length n named x. We know that member i from MDC dances with member from NFC. Your task is to calculate the complexity of this assignment modulo 1000000007 (109 + 7).

Expression denotes applying «XOR» to numbers x and y. This operation exists in all modern programming languages, for example, in C++ and Java it denotes as «^», in Pascal — «xor».

Input

The first line of input contains a binary number x of lenght n, (1 ≤ n ≤ 100).

This number may contain leading zeros.

Output

Print the complexity of the given dance assignent modulo 1000000007 (109 + 7).

Examples

Input

Copy

11

Output

Copy

6

Input

Copy

01

Output

Copy

2

Input

Copy

1

Output

Copy

1

思路:

题目意思是给一个长度为n的01字符串x,然后将0到n-1的数与x做亦或,映射到另一组数,求这个形成的键值对的复杂度,根据复杂度定义,我们知道(a,b)与(c,d),当a<c&&b>d时算一个复杂度,由于我们是从小到大枚举键的,满足复杂度的第一个条件,只要再满足值是逆序的就可以了,题目就转换成了求有多少个逆序对。

我们可以来找一下规律:

n=3时,有

x=000

000=>000

001=>001

...

111=>111,值的逆序对为0,所以复杂度为零

x=001

000=>011

001=>000

010=>011

011=>010

...

111=>110,值的逆序对有4个,所以复杂度是四

以此类推,最终得到:\(a_0=0,a_1=4,a_2=8,...,a_7=28\),即\(a_x=4x\).

同理,n=2时有\(a_x=2x\).最后有:\(a_x=2^{n-1}x\).

由于是大数,需要用到快速幂和及时取余。

代码:

#include <iostream>
#include <string>
#define m 1000000007
using namespace std;
int n;
string s;
long long convert(string s)
{
long long ans = 0;
long long weight = 1;
for(int i = s.size()-1;i>=0;i--)
{
if(s[i]=='1')
{
ans = (ans+weight)%m;
}
weight = (weight%m*2)%m;
}
return ans;
}
long long q_mod(long long a,long long b,long long mod)
{
long long sum = 1;
while(b)
{
if(b&1)
{
sum = (sum%mod*a%mod)%mod;
}
a = (a%mod*a%mod)%mod;
b >>= 1;
}
return sum;
}
int main()
{
//cout << q_mod(2,3,m) << endl;
cin >> s;
n = s.size();
long long ans = convert(s);
ans = (ans%m*q_mod(2,n-1,m))%m;
cout << ans << endl;
}

Codeforces H. Malek Dance Club(找规律)的更多相关文章

  1. Malek Dance Club(递推)

    Malek Dance Club time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  2. codeforces B. A and B 找规律

    Educational Codeforces Round 78 (Rated for Div. 2) 1278B - 6 B. A and B  time limit per test 1 secon ...

  3. Codeforces 870C Maximum splitting (贪心+找规律)

    <题目链接> 题目大意: 给定数字n,让你将其分成合数相加的形式,问你最多能够将其分成几个合数相加. 解题分析: 因为要将其分成合数相加的个数最多,所以自然是尽可能地将其分成尽可能小的合数 ...

  4. Codeforces Gym 100015B Ball Painting 找规律

    Ball Painting 题目连接: http://codeforces.com/gym/100015/attachments Description There are 2N white ball ...

  5. Codeforces 603A - Alternative Thinking - [字符串找规律]

    题目链接:http://codeforces.com/problemset/problem/603/A 题意: 给定一个 $01$ 串,我们“交替子序列”为这个串的一个不连续子序列,它满足任意的两个相 ...

  6. Codeforces Gym 100637B B. Lunch 找规律

    B. Lunch Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100637/problem/B Des ...

  7. Codeforces 474D Flowers (线性dp 找规律)

    D. Flowers time limit per test:1.5 seconds memory limit per test:256 megabytes We saw the little gam ...

  8. codeforces D. Queue 找规律+递推

    题目链接: http://codeforces.com/problemset/problem/353/D?mobile=true H. Queue time limit per test 1 seco ...

  9. Codeforces D. Little Elephant and Interval(思维找规律数位dp)

    题目描述: Little Elephant and Interval time limit per test 2 seconds memory limit per test 256 megabytes ...

随机推荐

  1. windows安装boost

    2019年11月4日16:00:36 Boost.Asio 使用文档 https://mmoaay.gitbooks.io/boost-asio-cpp-network-programming-chi ...

  2. CSS布局:sticky定位

    stick定位一如其名:它随“正常”文档流而动,直到规定位置,尔后“粘”在那里:或者,当它发现自己可以跟随“正常”文档流而脱离sticky位置时,就果断离开从而加入文档流. 代码与效果如下: < ...

  3. cube-ui按钮配合toast单例模式应用

    <template> <div> <cube-button icon="cubeic-right" @click="goNext" ...

  4. CentOS升级kernel

    CentOS升级kernel 升级命令: yum update kernel yum update kernel-devel yum update kernel-firmware yum update ...

  5. dell服务器在bios中指定raid5的热备盘

    一.创建raid5 二.指定热备盘   选择第15块磁盘作为上面创建的raid5的热备盘 选中 选中我们刚创建的raid5,点击OK

  6. LeetCode 1071. 字符串的最大公因子(Greatest Common Divisor of Strings) 45

    1071. 字符串的最大公因子 1071. Greatest Common Divisor of Strings 题目描述 对于字符串 S 和 T,只有在 S = T + ... + T(T 与自身连 ...

  7. zuul网关路由作用

    为了方便客户端调用微服务,所以设计出了网关.在微服务实例地址发生改变的情况下,客户端调用服务要能够不受影响. 网关可以完成的功能:路由,反向代理,日志记录,权限控制,限流 在本例子中 Eureka  ...

  8. PB 将菜单中的部分按钮设置为某些页面不可选中

    if tab_1.selectedtab = 9 or tab_1.selectedtab = 10 then uo_toolbarstrip.of_enable(uo_toolbarstrip.of ...

  9. SPOJ Qtree系列

    Qtree1 将边权变为这条边连接的两个点中深度更深的点的点权,这样就可以变为带修改链上最大点权.直接树链剖分即可. 下面是一份C语言代码 #include<stdio.h> #inclu ...

  10. linux 查询某个时间段的日志

    目前因发生了异常大概记得发生的时间段,想查看这个时间段的日志 如我们的日志格式如下 1:09:59.946 [http-nio-12129-exec-10] INFO ntroller start = ...