SP5971 LCMSUM 数论
题目要我们求这个:
\]
开始化式子:
\]
\]
\]
注意那个\(\sum_{i=1}^{d}i[gcd(i,d)=1]\)是求\([1,d]\)中所有与\(d\)互质的数的和,可以证明当\(d>1\)时,它等于\(\frac{d*\phi(d)}{2}\),证明如下:
对于每个\(i\),若它与\(d\)互质,则\(d-i\)也与\(d\)互质,每一对\(i\)与\(d-i\)的和为\(d\),所以平均每个与\(d\)互质的数的值为\(\frac{d}{2}\),一共有\(\phi(d)\)个与\(d\)互质的数,所以他们的和为\(\frac{d*\phi(d)}{2}\)
而与\(1\)互质的数的和显然为\(1\)
所以上式可化为
\]
\]
设\(g(n)=\sum_{d|n}d*\phi(d)\),上式化为:
\]
其中\(g(n)\)是一个积性函数,可以\(O(n)\)筛出
每次询问是\(O(1)\)的
总时间复杂度为\(O(n+T)\)
关于如何线筛出\(g(n)\):
\(n\)为质数:\(g(n)=1+n*\phi(n)=1+n*(n-1)\)
\(n=p^k\):
\]
\]
\]
\]
\]
\(n\)的最小质因子为\(p\):\(g(n)=g(n'*p^k)=g(n')*g(p^k)\)
然后就可以线性筛了
代码:
#include<bits/stdc++.h>
using namespace std;
#define N 1000007
#define ll long long
const int lim=1e6;
int pr[N],cnt,pk[N];
bool zhi[N];
ll f[N];
void Init()
{
int i,j;
f[1]=1;
for(i=2;i<=lim;i++)
{
if(!zhi[i])
{
pr[++cnt]=i,f[i]=1+1ll*i*(i-1);
pk[i]=i;
}
for(j=1;j<=cnt&&i*pr[j]<=lim;j++)
{
int p=pr[j],x=i*p;
zhi[x]=true;
if(i%p==0)
{
pk[x]=pk[i]*p;
f[x]=f[x/pk[x]]*(1+(1ll*pk[x]*pk[x]*p-p)/(p+1));
break;
}
pk[x]=p;
f[x]=f[i]*f[p];
}
}
for(i=1;i<=lim;i++)
f[i]=1ll*(f[i]-1)*i/2+i;
}
int main()
{
int t,n;
Init();
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
printf("%lld\n",f[n]);
}
return 0;
}
我原本的做法是用\(\mu\)暴力拆\([gcd(i,d)=1]\),但是那样做的复杂度是\(O(n\log n)\)的,也没有这个做法巧妙,这里就不讲了。
SP5971 LCMSUM 数论的更多相关文章
- bzoj 2226: [Spoj 5971] LCMSum 数论
2226: [Spoj 5971] LCMSum Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 578 Solved: 259[Submit][St ...
- BZOJ 2226 [Spoj 5971] LCMSum | 数论拆式子
题目: http://www.lydsy.com/JudgeOnline/problem.php?id=2226 题解: 题目要求的是Σn*i/gcd(i,n) i∈[1,n] 把n提出来变成Σi/g ...
- SP5971 LCMSUM - LCM Sum
一个基于观察不依赖于反演的做法. 首先 \(\rm lcm\) 是不好算的,转化为计算 \(\rm gcd\) 的问题,求: \[\sum\limits_{i = 1} ^ n \frac{in}{\ ...
- X000011
P1890 gcd区间 \(\gcd\) 是满足结合律的,所以考虑用 ST 表解决 时间复杂度 \(O((n\log n+m)\log a_i)\) 考虑到 \(n\) 很小,你也可以直接算出所有的区 ...
- 初等数论学习笔记 III:数论函数与筛法
初等数论学习笔记 I:同余相关. 初等数论学习笔记 II:分解质因数. 1. 数论函数 本篇笔记所有内容均与数论函数相关.因此充分了解各种数论函数的名称,定义,符号和性质是必要的. 1.1 相关定义 ...
- gcd套路变换
gcd套路变换 GCD https://www.luogu.org/problem/P2568 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. $ 1& ...
- BZOJ 2226 [Spoj 5971] LCMSum 最大公约数之和 | 数论
BZOJ 2226 [Spoj 5971] LCMSum 这道题和上一道题十分类似. \[\begin{align*} \sum_{i = 1}^{n}\operatorname{LCM}(i, n) ...
- bzoj 2401: 陶陶的难题I 数论
2401: 陶陶的难题I Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 89 Solved: 24[Submit][Status] Descript ...
- Codeforces Round #382 Div. 2【数论】
C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据, ...
随机推荐
- 类型和变量(C#学习笔记02)
类型和变量 [C#类型和变量(原文参考官方教程)]https://docs.microsoft.com/zh-cn/dotnet/csharp/tour-of-csharp/types-and-var ...
- 【转载】C#使用InsertRange方法往ArrayList集合指定位置插入另一个集合
在C#的编程开发中,ArrayList集合是一个常用的非泛型类集合,ArrayList集合可存储多种数据类型的对象.在实际的开发过程中,我们可以使用InsertRange方法在ArrayList集合指 ...
- 【转载】 C#中ArrayList使用GetRange方法获取某一段集合数据
在C#的编程开发中,ArrayList集合是一个常用的非泛型类集合,可以使用GetRange方法来获取集合中指定索引位置开始的一整段集合数据组成一个新的集合,GetRange方法的签名为virtual ...
- 封装axios,带请求头和响应头
import axios from "axios"; import qs from "qs"; //处理参数 import router from '../ro ...
- 前端工程师拿到全新的 Mac 需要做哪些准备
最近苹果退出了新款 Mac,用了3年15款Pro之后,终于盼到18款的降价,于是含泪更新换代 但是每次换电脑,重装环境的好多东西记不清,于是记个笔记 一.终端 安装 zsh sh -c "$ ...
- mybatis的一级缓存与二级缓存
一级缓存 Mybatis一级缓存的作用域是同一个SqlSession,在同一个sqlSession中两次执行相同的sql语句,第一次执行完毕会将数据库中查询的数据写到缓存(内存),第二次会从缓存中 ...
- 安全SECUERITY英文SECUERITY证券
security Alternative forms secuerity (mostly obsolete) English Alternative forms secuerity Pronuncia ...
- 面试题:什么叫平衡二叉查找树--AVL树
查找.插入和删除在平均和最坏情况下都是O(log n) 增加和删除可能需要通过一次或多次树旋转来重新平衡这个树 节点的平衡因子是它的左子树的高度减去它的右子树的高度.带有平衡因子 1.0 或 -1 的 ...
- django项目后台权限管理功能。
对后台管理员进行分角色,分类别管理,每个管理员登录账号后只显示自己负责的权限范围. 创建后台管理数据库 models.py文件内 # 管理员表 class Superuser(models.Model ...
- C#WinForm程序异常退出的捕获、继续执行与自动重启
本文参考网上搜索的信息,并做了适当修改可以让捕捉到异常之后阻止程序退出. 另给出了通过命令行自动重启的方法. 如果一个线程里运行下面的代码 ; / a; 将会导致程序自动结束,而且没有任何提示信息 但 ...