题面

题目要我们求这个:

\[\sum_{i=1}^n lcm(i,n)
\]

开始化式子:

\[\sum_{i=1}^{n} \frac{i*n}{gcd(i,n)}
\]

\[\sum_{d|n} \sum_{i=1}^{\frac{n}{d}} i*n[gcd(i,\frac{n}{d})=1]
\]

\[n*\sum_{d|n}\sum_{i=1}^{d}i[gcd(i,d)=1]
\]

注意那个\(\sum_{i=1}^{d}i[gcd(i,d)=1]\)是求\([1,d]\)中所有与\(d\)互质的数的和,可以证明当\(d>1\)时,它等于\(\frac{d*\phi(d)}{2}\),证明如下:

对于每个\(i\),若它与\(d\)互质,则\(d-i\)也与\(d\)互质,每一对\(i\)与\(d-i\)的和为\(d\),所以平均每个与\(d\)互质的数的值为\(\frac{d}{2}\),一共有\(\phi(d)\)个与\(d\)互质的数,所以他们的和为\(\frac{d*\phi(d)}{2}\)

而与\(1\)互质的数的和显然为\(1\)

所以上式可化为

\[n*\big((\sum_{d|n,d>1}\frac{d*\phi(d)}{2})+1\big)
\]

\[\big( \frac{n}{2}*\sum_{d|n,d>1}d*\phi(d)\big)+n
\]

设\(g(n)=\sum_{d|n}d*\phi(d)\),上式化为:

\[\frac{n}{2}*(g(n)-1)+n
\]

其中\(g(n)\)是一个积性函数,可以\(O(n)\)筛出

每次询问是\(O(1)\)的

总时间复杂度为\(O(n+T)\)

关于如何线筛出\(g(n)\):

\(n\)为质数:\(g(n)=1+n*\phi(n)=1+n*(n-1)\)

\(n=p^k\):

\[g(n)=1+\sum_{i=1}^{k}p^i*\phi(p^i)
\]

\[=1+\sum_{i=1}^{k}p^i*p^{i-1}*(p-1)
\]

\[=1+(p-1)\sum_{i=1}^{k}p^{2i-1}
\]

\[=1+(p-1)\frac{p^{2k+1}-p}{p^2-1}
\]

\[=1+\frac{p^{2k+1}-p}{p+1}
\]

\(n\)的最小质因子为\(p\):\(g(n)=g(n'*p^k)=g(n')*g(p^k)\)

然后就可以线性筛了

代码:

#include<bits/stdc++.h>
using namespace std;
#define N 1000007
#define ll long long
const int lim=1e6;
int pr[N],cnt,pk[N];
bool zhi[N];
ll f[N];
void Init()
{
int i,j;
f[1]=1;
for(i=2;i<=lim;i++)
{
if(!zhi[i])
{
pr[++cnt]=i,f[i]=1+1ll*i*(i-1);
pk[i]=i;
}
for(j=1;j<=cnt&&i*pr[j]<=lim;j++)
{
int p=pr[j],x=i*p;
zhi[x]=true;
if(i%p==0)
{
pk[x]=pk[i]*p;
f[x]=f[x/pk[x]]*(1+(1ll*pk[x]*pk[x]*p-p)/(p+1));
break;
}
pk[x]=p;
f[x]=f[i]*f[p];
}
}
for(i=1;i<=lim;i++)
f[i]=1ll*(f[i]-1)*i/2+i;
}
int main()
{
int t,n;
Init();
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
printf("%lld\n",f[n]);
}
return 0;
}

我原本的做法是用\(\mu\)暴力拆\([gcd(i,d)=1]\),但是那样做的复杂度是\(O(n\log n)\)的,也没有这个做法巧妙,这里就不讲了。

SP5971 LCMSUM 数论的更多相关文章

  1. bzoj 2226: [Spoj 5971] LCMSum 数论

    2226: [Spoj 5971] LCMSum Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 578  Solved: 259[Submit][St ...

  2. BZOJ 2226 [Spoj 5971] LCMSum | 数论拆式子

    题目: http://www.lydsy.com/JudgeOnline/problem.php?id=2226 题解: 题目要求的是Σn*i/gcd(i,n) i∈[1,n] 把n提出来变成Σi/g ...

  3. SP5971 LCMSUM - LCM Sum

    一个基于观察不依赖于反演的做法. 首先 \(\rm lcm\) 是不好算的,转化为计算 \(\rm gcd\) 的问题,求: \[\sum\limits_{i = 1} ^ n \frac{in}{\ ...

  4. X000011

    P1890 gcd区间 \(\gcd\) 是满足结合律的,所以考虑用 ST 表解决 时间复杂度 \(O((n\log n+m)\log a_i)\) 考虑到 \(n\) 很小,你也可以直接算出所有的区 ...

  5. 初等数论学习笔记 III:数论函数与筛法

    初等数论学习笔记 I:同余相关. 初等数论学习笔记 II:分解质因数. 1. 数论函数 本篇笔记所有内容均与数论函数相关.因此充分了解各种数论函数的名称,定义,符号和性质是必要的. 1.1 相关定义 ...

  6. gcd套路变换

    gcd套路变换 GCD https://www.luogu.org/problem/P2568 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. $ 1& ...

  7. BZOJ 2226 [Spoj 5971] LCMSum 最大公约数之和 | 数论

    BZOJ 2226 [Spoj 5971] LCMSum 这道题和上一道题十分类似. \[\begin{align*} \sum_{i = 1}^{n}\operatorname{LCM}(i, n) ...

  8. bzoj 2401: 陶陶的难题I 数论

    2401: 陶陶的难题I Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 89  Solved: 24[Submit][Status] Descript ...

  9. Codeforces Round #382 Div. 2【数论】

    C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据, ...

随机推荐

  1. 服务上的图片直接在浏览器上可以打开,但是在img上报404错误处理方法

    在index.html中添加代码如下 <meta name="referrer" content="no-referrer" /> 如果还是存在问题 ...

  2. FreePascal - CodeTyphon 如何让编译的程序更小!

    CodeTyphon 6.9 在菜单[project]-->[project option]的弹出界面中 选择[compiler option]-->[debugging] 1,去掉“Ge ...

  3. Python 之 计算psnr和ssim值

    基于python版的PSNR和ssim值计算 总所周知,图像质量评价的常用指标有PSNR和SSIM等,本博文是基于python版的图像numpy的float64格式和uint8格式计算两种指标值(附代 ...

  4. 补充1:IDA的脚本IDC语言

    1.IDA脚本的打开与使用: IDA脚本两种语言:IDC(IDC,本地脚本语言)和Python 2.IDC语言介绍 1.IDC变量:IDC是一种松散的语言,没有明确的类型.使用3中数据类型,整数(ID ...

  5. RabbitMQ基本概念(三)-Centos7下安装RabbitMQ3.6.1

    如果你看过前两章对RabbitMQ已经有了一定了解,现在已经摩拳擦掌,来吧动手吧! 用什么系统 本文使用的是Centos7,为了保证对linux不太熟悉的伙伴也能轻松上手(避免折在安装的路上),下面是 ...

  6. 大数据技术之Sqoop

    大数据技术之Sqoop  一.Sqoop简介 Apache Sqoop(TM)是一种旨在有效地在Apache Hadoop和诸如关系数据库等结构化数据存储之间传输大量数据的工具. Sqoop于2012 ...

  7. k8s几种pod的控制器

    replicationcontroller 选择器 模版 副本数   如果更改选择器,则会创建新的pod 如果更改pod的标签,那么也会创建新的pod进行替换,但是老的pod不会被删除 如果更改模版, ...

  8. WSGI——python web 服务器网关接口

    转载请注明原文地址:https://www.cnblogs.com/ygj0930/p/10826084.html 一:服务器.服务器软件.应用程序(后台) 我们常说“服务器”,实际上服务器是一个很宽 ...

  9. httprunner学习17-linux上安装httprunner环境

    前言 如果你是在linux上安装httprunner环境,用的是python3的环境,安装成功后会发现hrun命令找不到,需添加软链接. 环境准备: centos 7.6 python 3.6 htt ...

  10. P4281 [AHOI2008]紧急集合 / 聚会[LCA]

    解析 蒟蒻用的办法比较蠢,不如上面的各位大佬,直接化成一个式子了,我还是分类讨论做的. 下面正文. 猜想:最优集合点一定是三点任意两对点对应的路径的交点. 不妨这样想,如果任意两个人经过同一条路径,那 ...