GIL全局解释锁
一 介绍
'''
定义:
In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple
native threads from executing Python bytecodes at once. This lock is necessary mainly
because CPython’s memory management is not thread-safe. (However, since the GIL
exists, other features have grown to depend on the guarantees that it enforces.)
'''
结论:在Cpython解释器中,同一个进程下开启的多线程,同一时刻只能有一个线程执行,无法利用多核优势
首先需要明确的一点是GIL
并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念。就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执行代码。有名的编译器例如GCC,INTEL C++,Visual C++等。Python也一样,同样一段代码可以通过CPython,PyPy,Psyco等不同的Python执行环境来执行。像其中的JPython就没有GIL。然而因为CPython是大部分环境下默认的Python执行环境。所以在很多人的概念里CPython就是Python,也就想当然的把GIL
归结为Python语言的缺陷。所以这里要先明确一点:GIL并不是Python的特性,Python完全可以不依赖于GIL
二 GIL介绍
GIL本质就是一把互斥锁,既然是互斥锁,所有互斥锁的本质都一样,都是将并发运行变成串行,以此来控制同一时间内共享数据只能被一个任务所修改,进而保证数据安全。
可以肯定的一点是:保护不同的数据的安全,就应该加不同的锁。
要想了解GIL,首先确定一点:每次执行python程序,都会产生一个独立的进程。例如python test.py,python aaa.py,python bbb.py会产生3个不同的python进程
'''
#验证python test.py只会产生一个进程
#test.py内容
import os,time
print(os.getpid())
time.sleep(1000)
'''
python3 test.py
#在windows下
tasklist |findstr python
#在linux下
ps aux |grep python
在一个python的进程内,不仅有test.py的主线程或者由该主线程开启的其他线程,还有解释器开启的垃圾回收等解释器级别的线程,总之,所有线程都运行在这一个进程内,毫无疑问
#1 所有数据都是共享的,这其中,代码作为一种数据也是被所有线程共享的(test.py的所有代码以及Cpython解释器的所有代码)
#2 所有线程的任务,都需要将任务的代码当做参数传给解释器(的代码)去执行,即所有的线程要想运行自己的任务,首先需要解决的是能够访问到解释器(的代码)。
综上:
如果多个线程的target=work,那么执行流程是
多个线程先访问到解释器的代码,即拿到执行权限,然后将target的代码交给解释器的代码去执行
解释器的代码是所有线程共享的,所以垃圾回收线程也可能访问到解释器的代码而去执行,这就导致了一个问题:对于同一个数据100,可能线程1执行x=100的同时,而垃圾回收执行的是回收100的操作,解决这种问题没有什么高明的方法,就是加锁处理,如下图的GIL,保证python解释器同一时间只能执行一个任务的代码
三 GIL与多线程
有了GIL的存在,同一时刻同一进程中只有一个线程被执行
听到这里,有的同学立马质问:进程可以利用多核,但是开销大,而python的多线程开销小,但却无法利用多核优势,也就是说python没用了,php才是最牛逼的语言
别着急啊,老娘还没讲完呢。
要解决这个问题,我们需要在几个点上达成一致:
#1. cpu到底是用来做计算的,还是用来做I/O的?
#2. 多cpu,意味着可以有多个核并行完成计算,所以多核提升的是计算性能
#3. 每个cpu一旦遇到I/O阻塞,仍然需要等待,所以多核对I/O操作没什么用处
结论:
对计算来说,cpu越多越好,但是对于I/O来说,再多的cpu也没用
当然对运行一个程序来说,随着cpu的增多执行效率肯定会有所提高(不管提高幅度多大,总会有所提高),这是因为一个程序基本上不会是纯计算或者纯I/O,所以我们只能相对的去看一个程序到底是计算密集型还是I/O密集型,从而进一步分析python的多线程到底有无用武之地
#结论:现在的计算机基本上都是多核,python对于计算密集型的任务开多线程的效率并不能带来多大性能上的提升,甚至不如串行(没有大量切换),但是,对于IO密集型的任务效率还是有显著提升的。
四 多线程性能测试
计算密集型:多进程效率高
from multiprocessing import Process
from threading import Thread
import os,time
def work():
res=0
for i in range(100000000):
res*=i
if __name__ == '__main__':
l=[]
print(os.cpu_count()) #本机为4核
start=time.time()
for i in range(4):
p=Process(target=work) #耗时5s多
p=Thread(target=work) #耗时18s多
l.append(p)
p.start()
for p in l:
p.join()
stop=time.time()
print('run time is %s' %(stop-start))
I/O密集型:多线程效率高
from multiprocessing import Process
from threading import Thread
import threading
import os,time
def work():
time.sleep(2)
print('===>')
if __name__ == '__main__':
l=[]
print(os.cpu_count()) #本机为4核
start=time.time()
for i in range(400):
# p=Process(target=work) #耗时12s多,大部分时间耗费在创建进程上
p=Thread(target=work) #耗时2s多
l.append(p)
p.start()
for p in l:
p.join()
stop=time.time()
print('run time is %s' %(stop-start))
应用:
多线程用于IO密集型,如socket,爬虫,web
多进程用于计算密集型,如金融分析
GIL全局解释锁的更多相关文章
- GIL全局解释锁,死锁,信号量,event事件,线程queue,TCP服务端实现并发
一.GIL全局解释锁 在Cpython解释器才有GIL的概念,不是python的特点 在Cpython解释器中,同一个进程下开启的多线程,同一时刻只能有一个线程执行,无法利用多核优势. 1.GIL介绍 ...
- 20191031:GIL全局解释锁
20191031:GIL全局解释锁 总结关于GIL全局解释锁的个人理解 GIl全局解释锁,本身不是Python语言的特性,而是Python语言底层的c Python解释器的一个特性.在其他解释器中是没 ...
- ~~并发编程(十一):GIL全局解释锁~~
进击のpython ***** 并发编程--GIL全局解释锁 这小节就是有些"大神"批判python语言不完美之处的开始 这一节我们要了解一下Cpython的GIL解释器锁的工作机 ...
- python中的GIL(全局解释锁)多线程能够提升效率
预启动的时候,应用程序仍然会调用 OnLaunched 方法的,在 OnLaunched 方法调用之后,会马上发生 Suspending 事件,随后应用就会暂停. 我先基于develop主分支拉出一个 ...
- 并发、并行、同步、异步、全局解释锁GIL、同步锁Lock、死锁、递归锁、同步对象/条件、信号量、队列、生产者消费者、多进程模块、进程的调用、Process类、
并发:是指系统具有处理多个任务/动作的能力. 并行:是指系统具有同时处理多个任务/动作的能力. 并行是并发的子集. 同步:当进程执行到一个IO(等待外部数据)的时候. 异步:当进程执行到一个IO不等到 ...
- GIL全局解释器锁、死锁、递归锁、线程队列
目录 GIL全局解释锁 多线程的作用 测试计算密集型 IO密集型 死锁现象 递归锁 信号量(了解) 线程队列 GIL全局解释锁 GIL本质上是一个互斥锁. GIL是为了阻止同一个进程内多个进程同时执行 ...
- 什么是python的全局解释锁(GIL)
GIL解决了Python中的什么问题? 为什么选取GIL作为解决方案? 对多线程Python程序的影响 为什么GIL还没有被删除? 为什么在Python 3 中GIL没有被移除? 如何处理Python ...
- 全局解释锁GIL
''' 定义: In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native th ...
- Python自动化 【第九篇】:Python基础-线程、进程及python GIL全局解释器锁
本节内容: 进程与线程区别 线程 a) 语法 b) join c) 线程锁之Lock\Rlock\信号量 d) 将线程变为守护进程 e) Event事件 f) queue队列 g) 生 ...
随机推荐
- windbg排查线上线程数爆炸问题
1.早上发现有个job的线程数一直居高不下 2.于是dump一个文件拉到本地,查到都在执行 StartInner方法 3.查询代码,此方法是个静态类开启线程的地方,理论上没有任何问题 4.思索了半天, ...
- Qt Quick 基本元素初体验
Qt Quick 作为 QML 语言的标准库,提供了很多基本元素和控件来帮助我们构建 Qt Quick 应用,这节我们简要地介绍一些 Qt Quick 元素. 一. 基本可视化项 1.1 Item I ...
- 阿里云RDS数据库备份同步到自建库方法(SHELL脚本)
一.背景: 由于阿里云RDS生产库每天都需要备份且拷贝到自建读库,而如果使用阿里云的自动拷贝到只读实例, 费用太高, 故采用自编写同步脚本方法实现. 二.前提: 1). 已开通阿里云RDS, 且开启定 ...
- orientation属性(判断是否为横竖屏)
现在有一个需求:移动端网页默认竖屏显示,当用户横屏浏览,就给予相应提示,比如横屏时显示下面截图提示信息 几年前,可能大家想到用 window.orientation 属性来实现,现官方已弃用,不做推荐 ...
- crushmap磁盘智能分组
目录 简介 配置crush class 1. 创建ssd class 2. 创建基于ssd的class rule 3. 创建基于ssd_rule规则的存储池 4. 测试基于ssd的池 简介 ceph从 ...
- Windbg断点调试.net程序
程序员都知道,在生产环境中,如果没有系统日志,对问题的分析将非常的困难.即使有日志,有时候也会因为日志记录的不全面,而导致问题不能分析清楚.其实,Windbg里面有Live Debug功能,正好可以借 ...
- RabbitMQ实例C#
驱动组件.NET版本 官网推荐驱动:RabbitMQ.Client https://www.rabbitmq.com/devtools.html#dotnet-dev Connection和Chann ...
- Winform c# 多线程处理实例
我们在用C# 开发程序时,经常会使用的多线程,实现多任务的处理.一般常用的方法是新建多个线程,进行处理. 今天我分享一个采用线程池的方式来实现的实例.对有需要的朋友做个借鉴. 实例: Winform ...
- powershell ssh-agent 无法工作
windows 10的powershell已经支持open-ssh的功能. 但是运行get-service ssh-agent似乎显示的stopped. 如下: PS C:\WINDOWS\syste ...
- js对象常用属性和方法:复制一个对象,获取一个对象的所有key和所有value的方法
记录对象的一些实用使用方法及属性 // Object.assign() 多个对象合并 key相同则后面的覆盖前面的 const target = { a: 1, b: 2 }; const sourc ...