题目转自hdu 1102,题目传送门


题目大意:

输入一个n*n的邻接矩阵,其中i行j列代表从i到j的路径的长度

然后又m条路已经帮你修好了,求最短要修多长的路才能使所有村庄连接

不难看出,这道题就是标准的最小生成树模板,多水啊


解题思路

虽然很水,但本人还是调了近1h才把代码调好......

下面介绍一下解决最小生成树的两个方法:

Prim 和 Kruskal


一,Prim(不懂的点这里)

Prim的思想和dijkstra的想法很想(如果不知道dijkstra算法的请点这里)

那么Prim的复杂度在为优化之前是O(n2),还是很慢的(虽然这道题能过)

既然这样,那这道题该怎么用Prim解呢?

思考了近10min后我想到了一个绝妙的方法,但是这里地方太小写不下

既然已经有建好了的,那我们肯定要用他已经建好的

所以,我们在输入时做一个预处理

将所有已经建过的路的距离化为0,然后再跑一遍Prim就行了

预处理代码如下:

for(int i=;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
g[x][y]=g[y][x]=;
}

p.s.:g为邻接矩阵

然后在花15min打一遍Prim算法就可以愉快地AC了

AC代码如下:

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#define inf 2147483647
using namespace std;
bool vis[];
int n,m,cnt,ans,u;
int dis[];
int g[][];
void init()
{
ans=cnt=;
memset(vis,false,sizeof(vis));
memset(dis,0x7f,sizeof(dis));
return ;
}
void pirm()
{
dis[]=;
while(true)
{
u=;
for(int i=;i<=n;i++)
if(!vis[i] && (dis[i]<dis[u])) u=i;
if(u==) return ;
vis[u]=true;
ans+=dis[u];
for(int i=;i<=n;i++) dis[i]=min(dis[i],g[u][i]);
}
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
init();
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
scanf("%d",&g[i][j]);
scanf("%d",&m);
for(int i=;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
g[x][y]=g[y][x]=;
}
pirm();
printf("%d\n",ans);
}
return ;
}

接下来看Kruskal......


二,Kruskal(不懂的点这里)

Kruskal中将用到hdu 1198中的并查集(点此转到我的的博客:图论问题(1):hdu 1198

Kruskal主要就是把边按边权从小到大排序

在通过并查集检查目前最小的边的两端是否在同一集合中

若是,则跳过这条边

否则就把他们归为一个集合

这里只需要提前作这一步骤就行了

预处理代码如下:

for(int i=;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
Union(x,y);
}

p.s.:其中Union为合并函数

然后就花个20min写完模板就可以愉快地AC了

AC代码如下:

#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std;
struct edge
{
int from,to,w;
bool operator<(const edge &a)const
{
return w<a.w;
}
}e[];
int n,m,cnt,ans;
int fa[];
void init()
{
for(int i=;i<=n;i++) fa[i]=i;
cnt=ans=;
return ;
}
int find_fa(int x)
{
if(x==fa[x]) return x;
else
{
fa[x]=find_fa(fa[x]);
return fa[x];
}
return ;
}
void Union(int x,int y)
{
x=find_fa(x);
y=find_fa(y);
if(x<y) fa[y]=x;
else fa[x]=y;
return ;
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
init();
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
scanf("%d",&e[cnt].w);
e[cnt].from=i;e[cnt].to=j;
cnt++;
}
scanf("%d",&m);
for(int i=;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
Union(x,y);
}
sort(e,e+cnt);
for(int i=;i<cnt;i++)
if(find_fa(e[i].from)!=find_fa(e[i].to))
{
Union(e[i].from,e[i].to);
ans+=e[i].w;
}
printf("%d\n",ans);
}
return ;
}

今天的讲解就到这了,若果有没有听懂的可以借鉴一下《啊哈!算法》

图论问题(2) : hdu 1102的更多相关文章

  1. HDU 1102 最小生成树裸题,kruskal,prim

    1.HDU  1102  Constructing Roads    最小生成树 2.总结: 题意:修路,裸题 (1)kruskal //kruskal #include<iostream> ...

  2. HDU 1102 Constructing Roads, Prim+优先队列

    题目链接:HDU 1102 Constructing Roads Constructing Roads Problem Description There are N villages, which ...

  3. hdu 1102 Constructing Roads Kruscal

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 题意:这道题实际上和hdu 1242 Rescue 非常相似,改变了输入方式之后, 本题实际上更 ...

  4. hdu 1102 Constructing Roads(最小生成树 Prim)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 Problem Description There are N villages, which ...

  5. HDU 1102(Constructing Roads)(最小生成树之prim算法)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1102 Constructing Roads Time Limit: 2000/1000 MS (Ja ...

  6. hdu 1102 Constructing Roads (Prim算法)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 Constructing Roads Time Limit: 2000/1000 MS (Jav ...

  7. hdu 1102 Constructing Roads (最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 Constructing Roads Time Limit: 2000/1000 MS (Jav ...

  8. HDU 1102 Constructing Roads (最小生成树)

    最小生成树模板(嗯……在kuangbin模板里面抄的……) 最小生成树(prim) /** Prim求MST * 耗费矩阵cost[][],标号从0开始,0~n-1 * 返回最小生成树的权值,返回-1 ...

  9. hdu 1102(最小生成树)

    Constructing Roads Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

随机推荐

  1. SpringDataRedis简单入门介绍

    1:问题引入 在实际开发中,开发的每一个项目,每天都有大量的人访问,对数据库造成很大的访问压力,甚至是瘫痪.那如何解决呢?我们通常的做法有两种:一种是数据缓存.一种是网页静态化.我们今天讨论第一种解决 ...

  2. tf.clip_by_value

    tf.clip_by_value(t, clip_value_min, clip_value_max, name=None) 功能:基于定义的min与max对tesor数据进行截断操作,目的是为了应对 ...

  3. windows上mysql解压缩版本、centos上rpm方式的安装、初始化等

    一.windows版本: https://dev.mysql.com/doc/refman/5.7/en/windows-install-archive.html 启动或者暂停mysql服务: htt ...

  4. Spring @CrossOrigin 通配符 解决跨域问题

    @CrossOrigin 通配符 解决跨域问题 痛点: 对很多api接口需要 开放H5 Ajax跨域请求支持 由于环境多套域名不同,而CrossOrigin 原生只支持* 或者具体域名的跨域支持 所以 ...

  5. 用Maven整合SSM框架

    前述 Maven 是专门用于构建和管理Java相关项目的工具,利用 Maven 的主要目的是统一维护 jar 包.关于 Maven 的安装在这篇里面就不说了. SSM(Spring+SpringMVC ...

  6. 使用 jQuery.TypeAhead 让文本框自动完成 (二)(访问远程数据)

    项目地址:https://github.com/twitter/typeahead.js 直接贴代码了: @section headSection { <script type="te ...

  7. Gevent工作原理(转)

    作者:大U哥链接:https://www.zhihu.com/question/20703476/answer/15911452来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明 ...

  8. 如何优雅地使用腾讯云COS-.NET篇

    如何优雅地使用腾讯云COS-.NET篇 代码下载地址 https://github.com/whuanle/txypx20190809 前提 创建子账号 打开 https://console.clou ...

  9. SocketServer模块与简单并发服务器

    思维导图文件:https://files-cdn.cnblogs.com/files/benjieming/SocketServer%E6%A8%A1%E5%9D%97%E4%B8%8E%E7%AE% ...

  10. vue中输入框只能输入数字

    方案1:增加自定义指令 自定义指令写法:      directives: {         numberOnly: {             bind(el) {                 ...