名称:决策树分析、EMV(期望货币值)
定义:它利用了概率论的原理,并且利用一种树形图作为分析工具。其基本原理是用决策点代表决策问题,用方案分枝代表可供选择的方案,用概率分枝代表方案可能出现的各种结果,经过对各种方案在各种结果条件下损益值的计算比较,为决策者提供决策依据。
要素:整个决策树由决策结点、方案分枝、状态结点、概率分枝和结果点五个要素构成。
步骤:
1、绘制决策树图。从左到右的顺序画决策树,此过程本身就是对决策问题的再分析过程。
2、按从右到左的顺序计算各方案的期望值,并将结果写在相应方案节点上方。期望值的计算是从右到左沿着决策树的反方向进行计算的。
3、对比各方案的期望值的大小,进行剪枝优选。在舍去备选方案 枝上,用“=”记号隔断。
适用过程:风险定量分析
示例:
下面以南方医院供应公司为例,看一看如何利用决策树作出合适的生产能力计划。 
  南方医院供应公司是一家制造医护人员的工装大褂的公司。该公司正在考虑扩大生产能力。它可以有以下几个选择:1、什么也不做;2、建一个小厂;3、建一个中型厂;4、建一个大厂。新增加的设备将生产一种新型的大褂,目前该产品的潜力或市场还是未知数。如果建一个大厂且市场较好就可实现$100,000的利润。如果市场不好则会导致$90,000的损失。但是,如果市场较好,建中型厂将会获得$ 60,000,小型厂将会获得$40,000,市场不好则建中型厂将会损失$10,000,小型厂将会损失$5,000。当然,还有一个选择就是什么也不干。最近的市场研究表明市场好的概率是0.4,也就是说市场不好的概率是0.6。参下图:
 
 
在这些数据的基础上,能产生最大的预期货币价值(EMV)的选择就可找到。 
 
EMV(建大厂)=(0.4)*($100,000)+(0.6)*(-$90,000)=-$14,000 
EMV(中型厂)=(0.4) *($ 600,000))+(0.6)* (-$10,000)=+$18,000 (EMV值最大)
EMV(建小厂)=(0.4)* ($40,000)+(0.6)*(-$5,000)=+$13,000 
EMV(不建厂)=$0 
 
综上所述,根据EMV标准,南方公司应该建一个中型厂。

报考须知:2017信息系统项目管理师报考指南 报名时间 考试大纲 考试教材

备考练习:2017信息系统项目管理师章节练习 每日一练 历年真题 考前密卷

加入信息系统项目管理师考友QQ群:89253946,交流学习,随时获取考试信息。

信息系统项目管理师考试备考已经开始,信管网特邀名师授课(马上免费试听),全面讲解考试重要知识点,保过班精品班直播班,为您的考证之路保驾护航。

 

决策树分析、EMV(期望货币值)的更多相关文章

  1. (转载)微软数据挖掘算法:Microsoft 决策树分析算法(1)

    微软数据挖掘算法:Microsoft 目录篇 介绍: Microsoft 决策树算法是分类和回归算法,用于对离散和连续属性进行预测性建模. 对于离散属性,该算法根据数据集中输入列之间的关系进行预测. ...

  2. Java数字、货币值和百分数等的格式化处理

    如果我们用下列语句输出一个数 System.out.println(123456.789); 将会在Console看到输出 123456.789 那么如何得到123,456.789这种格式化的输出呢? ...

  3. 用Excel建模进行决策树分析

    决策树(Decision Tree)在机器学习中也是比较常见的一种算法,最早的决策树算法是ID3,改善后得到了C4.5算法,进一步改进后形成了我们现在使用的C5.0算法,综合性能大幅提高. 算法核心: ...

  4. 【MM系列】SAP MM模块-分析采购收货完成标识

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP MM模块-分析采购收货完成标 ...

  5. (原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 决策树分析算法)

    随着大数据时代的到来,数据挖掘的重要性就变得显而易见,几种作为最低层的简单的数据挖掘算法,现在利用微软数据案例库做一个简要总结. 应用场景介绍 其实数据挖掘应用的场景无处不在,很多的环境都会应用到数据 ...

  6. Python数据挖掘之决策树DTC数据分析及鸢尾数据集分析

    Python数据挖掘之决策树DTC数据分析及鸢尾数据集分析 今天主要讲述的内容是关于决策树的知识,主要包括以下内容:1.分类及决策树算法介绍2.鸢尾花卉数据集介绍3.决策树实现鸢尾数据集分析.希望这篇 ...

  7. 决策树之ID3、C4.5、C5.0等五大算法

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- C5.0决策树之ID3.C4.5.C5.0算法 ...

  8. 【Machine Learning】决策树案例:基于python的商品购买能力预测系统

    决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本 ...

  9. 用MongoDB分析合肥餐饮业

    看了<从数据角度解析福州美食>后难免心痒,动了要分析合肥餐饮业的念头,因此特地写了Node.js爬虫爬取了合肥的大众点评数据.分析数据库我并没有采用MySQL而是用的MongoDB,是因为 ...

随机推荐

  1. C++(四十六) — 异常处理机制、标准IO输入输出

    1.异常处理机制 一般来说,异常处理就是在程序运行时对异常进行检测和控制.而在C++ 中,使用 try-throw-catch模式进行异常处理的机制. #include<iostream> ...

  2. charAt,charCode,fromCharCode区别

    1.charAt 返回字符串指定位置的字符 2.charCode 返回字符串指定位置字符Unicode编码 3.fromCharCode 用Unicode编码创建字符串 我们来看下例子 var str ...

  3. c# 3.0语言主要增强

    1隐含类型的局部变量 var i=5; var h=23.56; var s="Cshap" var intarr=new[]{1,2,3}; var 为关键字,可以根据后边的初始 ...

  4. HDU - 5823:color II (状压DP 反演DP)

    题意:给定连通图,求出连通图的所有子图的颜色数. 一个图的颜色数,指最少的颜色数,给图染色,使得有边相邻的点之间颜色不同. 思路:首先想法是DFS枚举,然后计算颜色,发现对于给定图,求颜色不会求? 毕 ...

  5. wordpress如何调用特定页面模板

    我们在制作page页面时经常会调用特定的页面模板,比如专题页,其实我们只要做一个这样的模板就可以了,很简单,定义一下,代码如下,Template Name: service就是具体的页面模板名,这个在 ...

  6. springboot项目报错Could not resolve placeholder 'datasource.type' in value "${datasource.type}"解决办法

    一,首先确认数据库的连接信息是否都正确,数据库能否正常连接(例如用客户端能连接上):二,确认配置文件中datasource.type配置是否正确,此处我们公司用的阿里的是com.alibaba.dru ...

  7. Django 中使用redis

    Django使用redis   方式一,使用Django-redis模块 #安装: pip3 install django-redis CACHES = { "default": ...

  8. js 符号转换 html代码

    S转换HTML转义符 //去掉html标签 function removeHtmlTab(tab) { return tab.replace(/<[^<>]+?>/g,''); ...

  9. MongoDB 红宝书-MongoDB官网使用指南

    本文转载自Mongodb中文社区:http://www.mongoing.com/archives/27359 无论你是MongoDB的使用者.爱好者.初学者还是路人甲,有一个学习与进修的资源宝藏是千 ...

  10. learning java FileInputStream

    public class FileInputStreamTest { public static void main(String[] args) throws IOException { var f ...