题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1284

Problem Description

在一个国家仅有1分,2分,3分硬币,将钱N兑换成硬币有很多种兑法。请你编程序计算出共有多少种兑法。

Input

每行只有一个正整数N,N小于32768。

Output

对应每个输入,输出兑换方法数。

Sample Input

2934
12553

Sample Output

718831
13137761

解题思路:这道题可以当做数学题来做。假设某种方案要使用i枚3分硬币(i∈[0,n/3]),那么剩下的就有n-3*i分需要用2分和1分补全。对于2分硬币的个数,可能使用0,1,·····(n-3*i)/2枚,剩下的全都用1分硬币即可。也就是说当使用i枚3分硬币时,就会产生出{(n-3*i)/2+1}*1=(n-3*i)/2+1种方案,那么只要枚举i,将所有方案数相加即可。

AC代码一:

 #include<bits/stdc++.h>
using namespace std;
int main(){
int sum,n;
while(cin>>n){
sum=;
for(int i=;i*<=n;++i)
sum+=(n-i*)/+;
cout<<sum<<endl;
}
return ;
}

AC代码二:考虑dp,dp[j]表示用若干个硬币组成钱j的方案数,易得状态转移方程为:dp[j]+=dp[j-i](j>=i),意思是当前币值是i,那么在组成钱j的基础上还可以这样增加新的方案数:用之前的j-i分再和当前i分组成钱j即增加了dp[j-i]*1这么多的方案数。举个栗子:现将3分钱兑换成硬币的所有方案数有①1+1+1=3--->1种;②去掉2枚1分换成1枚2分的硬币1+2=3,那么增加了之前的1种方案数,现共有2种方案数(dp[3]+=dp[3-2]);③还有一种就是用1枚3分的硬币替换3枚1分的硬币3+0=3,定义组成0钱的方案数为1种,那么此时也增加1种方案数(dp[3]+=dp[3-3]),所以组成3分钱共有3种方案数。注意:初始化dp数组全为0,定义dp[0]=1,因为组成钱0(事实上钱0是由钱i-i=0即i=i这种情况得来的)也算一种方案数,然后对于每种币值,从i~最大35000枚举更新累加对应组成钱j的方案数即可。

 #include<bits/stdc++.h>
using namespace std;
int main(){
int n,dp[]={};
for(int i=;i<=;++i)//币值
for(int j=i;j<;++j)//钱j,每种硬币可以有无限个-->完全背包
dp[j]+=dp[j-i];
while(cin>>n){cout<<dp[n]<<endl;}
return ;
}

AC代码三(936ms):用母函数做有点危险了-->差点TLE=_=||,还是贴一下代码吧233!

 #include<bits/stdc++.h>
using namespace std;
const int maxn=;
int n,c1[maxn],c2[maxn];
void init(){
memset(c1,,sizeof(c1));
memset(c2,,sizeof(c2));
c1[]=;
for(int i=;i<=;++i){
for(int j=;j<maxn;++j)
for(int k=;j+k<maxn;k+=i)
c2[j+k]+=c1[j];
for(int j=;j<maxn;++j)
c1[j]=c2[j],c2[j]=;
}
}
int main(){
init();
while(~scanf("%d",&n)){
printf("%d\n",c1[n]);
}
return ;
}

题解报告:hdu 1284 钱币兑换问题(简单数学orDP)的更多相关文章

  1. HDU 1284 钱币兑换问题(全然背包:入门题)

    HDU 1284 钱币兑换问题(全然背包:入门题) http://acm.hdu.edu.cn/showproblem.php?pid=1284 题意: 在一个国家仅有1分,2分.3分硬币,将钱N ( ...

  2. HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包)

    HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包) 题意分析 裸的完全背包问题 代码总览 #include <iostream> #include <cstdio> ...

  3. HDU 1284 钱币兑换问题 母函数、DP

    题目链接:HDU 1284 钱币兑换问题 钱币兑换问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  4. HDU 1284 钱币兑换问题(普通型 数量无限的母函数)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1284 钱币兑换问题 Time Limit: 2000/1000 MS (Java/Others)    ...

  5. hdu 1284 钱币兑换问题 完全背包

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1284 递推公式:dp[i] = sum(dp[i], dp[i-C]) /* 钱币兑换问题 Time ...

  6. hdu 1284 钱币兑换问题 (递推 || DP || 母函数)

    钱币兑换问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  7. HDU 1284 钱币兑换问题 (完全背包)

    钱币兑换问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  8. HDU 1284 钱币兑换问题 (动态规划 背包方案数)

    钱币兑换问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  9. 【完全背包】HDU 1284 钱币兑换问题

    Problem Description 在一个国家仅有1分,2分,3分硬币,将钱N兑换成硬币有很多种兑法.请你编程序计算出共有多少种兑法. Input 每行只有一个正整数N,N小于32768. Out ...

随机推荐

  1. sendEmail实现邮件报警发送

    安装wget http://caspian.dotconf.net/menu/Software/SendEmail/sendEmail-v1.56.tar.gz tar -xf sendEmail-v ...

  2. POJ3255 Roadblocks 【次短路】

    Roadblocks Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7760   Accepted: 2848 Descri ...

  3. pycharm快捷键和一些常用的设置

    http://blog.csdn.net/pipisorry/article/details/39909057 在PyCharm /opt/pycharm-3.4.1/help目录下可以找到Refer ...

  4. #Virtual hosts #Include conf/extra/httpd-vhosts.conf 开启就不能启动apache

    #Virtual hosts#Include conf/extra/httpd-vhosts.conf我只要把其中任何一个开启就是吧#去掉就启动不了apache.怎么回事error.log是这样的ht ...

  5. Servlet第七课:ServletContext HttpSession 以及HttpServletRequest之间的关系

    课程目标: ① 在Servlet中懂得ServletContext HttpSession 以及HttpServletRequest之间的关系 ② 懂得怎样使用它们 概念介绍: 1. [共同点]不管对 ...

  6. dm385的分辨率切换

    建议用两个RSZ的输出来完成切换分辨率功能,帧率可以通过软件丢帧来实现. 两个SWMS增加了两个1080p60的读和写,对系统影响是比较大的. http://www.deyisupport.com/q ...

  7. Java SE之break和continue标签

    文是学习网络上的文章时的总结,感谢大家无私的分享. Java没有提供goto功能,可是保留了gotokeyword. 在java中能够使用break标签和continue标签功能实现简版的goto功能 ...

  8. 使用JDBC 插入向数据库插入对象

    package com.ctl.util; import java.io.IOException; import java.lang.reflect.Field; import java.lang.r ...

  9. [RK3288][Android6.0] 关于uboot中logo相关知识点小结【转】

    本文转载自:http://blog.csdn.net/kris_fei/article/details/76256224 Platform: Rockchip OS: Android 6.0 Kern ...

  10. string operation in powershell

    https://blogs.technet.microsoft.com/heyscriptingguy/2014/07/15/keep-your-hands-clean-use-powershell- ...